BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36548263)

  • 1. Molecular Insights into Curvature Effects on the Capacitance of Electrical Double Layers in Tricationic Ionic Liquids with Carbon Nanotube Electrodes.
    Li DD; Li EC; Ji XY; Yang YR; Wang XD; Feng G
    Langmuir; 2023 Jan; 39(1):588-596. PubMed ID: 36548263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and Capacitance of Electrical Double Layers in Tricationic Ionic Liquids with Organic Solvents.
    Li DD; Li EC; Yang YR; Wang XD; Feng G
    J Phys Chem B; 2021 Nov; 125(46):12753-12762. PubMed ID: 34766766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative contributions of quantum and double layer capacitance to the supercapacitor performance of carbon nanotubes in an ionic liquid.
    Pak AJ; Paek E; Hwang GS
    Phys Chem Chem Phys; 2013 Dec; 15(45):19741-7. PubMed ID: 24141286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of Anion Shape on the Electrical Double Layer Microstructure and Capacitance of Ionic Liquids-Based Supercapacitors by Molecular Simulations.
    Chen M; Li S; Feng G
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28212336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of ion size and electrode curvature on electrical double layers in ionic liquids.
    Feng G; Qiao R; Huang J; Dai S; Sumpter BG; Meunier V
    Phys Chem Chem Phys; 2011 Jan; 13(3):1152-61. PubMed ID: 21079823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study.
    Li S; Feng G; Cummings PT
    J Phys Condens Matter; 2014 Jul; 26(28):284106. PubMed ID: 24920318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of dication symmetry on ionic liquid electrolytes in supercapacitors.
    Li S; Zhu M; Feng G
    J Phys Condens Matter; 2016 Nov; 28(46):464005. PubMed ID: 27624416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A "counter-charge layer in generalized solvents" framework for electrical double layers in neat and hybrid ionic liquid electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2011 Aug; 13(32):14723-34. PubMed ID: 21755079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces.
    Feng G; Jiang DE; Cummings PT
    J Chem Theory Comput; 2012 Mar; 8(3):1058-63. PubMed ID: 26593366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational and Experimental Study of Li-Doped Ionic Liquids at Electrified Interfaces.
    Haskins JB; Wu JJ; Lawson JW
    J Phys Chem C Nanomater Interfaces; 2016 Jun; 120(22):11993-12011. PubMed ID: 33005284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopatterning of Electrode Surfaces as a Potential Route to Improve the Energy Density of Electric Double-Layer Capacitors: Insight from Molecular Simulations.
    Xing L; Vatamanu J; Smith GD; Bedrov D
    J Phys Chem Lett; 2012 May; 3(9):1124-9. PubMed ID: 26288046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of surface nanostructure-induced innermost ion structuring on capacitance of carbon/ionic liquid double layers.
    Tu YJ; Peng ST
    Phys Chem Chem Phys; 2024 Feb; 26(7):5932-5946. PubMed ID: 38299635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics Simulation Study of the Capacitive Performance of a Binary Mixture of Ionic Liquids near an Onion-like Carbon Electrode.
    Li S; Feng G; Fulvio PF; Hillesheim PC; Liao C; Dai S; Cummings PT
    J Phys Chem Lett; 2012 Sep; 3(17):2465-9. PubMed ID: 26292134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemically Oxidized Carbon Nanotube Sheets for High-Performance and Flexible-Film Supercapacitors.
    Noh JH; Choi J; Seo H; Kim J; Choi C
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D.C. voltammetry of ionic liquid-based capacitors: effects of Faradaic reactions, electrolyte resistance and voltage scan speed investigated using an electrode of carbon nanotubes in EMIM-EtSO4.
    Zheng JP; Pettit CM; Goonetilleke PC; Zenger GM; Roy D
    Talanta; 2009 May; 78(3):1056-62. PubMed ID: 19269472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions.
    Shi M; Kou S; Yan X
    ChemSusChem; 2014 Nov; 7(11):3053-62. PubMed ID: 25146489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Interlayer Spaces and Interfacial Structures on High-Performance MXene/Ionic Liquid Supercapacitors: A Molecular Dynamics Simulation.
    Sun X; Li Y; Wang Y; Liu Z; Dong K; Zhang S
    Langmuir; 2024 Jan; 40(4):2220-2229. PubMed ID: 38214961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Insight into the Imidazolium-Based Ionic Liquid Interface Structure and Differential Capacitance on Au(111): Effects of the Cationic Substituent Group.
    Wang Y; Tian G
    Langmuir; 2023 Oct; 39(40):14231-14245. PubMed ID: 37751408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.