These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3654837)

  • 21. Measurements of protein-protein interactions by size exclusion chromatography.
    Bloustine J; Berejnov V; Fraden S
    Biophys J; 2003 Oct; 85(4):2619-23. PubMed ID: 14507724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On-line preconcentration of in-gel digest by ion-exchange chromatography for protein identification using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry.
    Zhang G; Fan H; Xu C; Bao H; Yang P
    Anal Biochem; 2003 Feb; 313(2):327-30. PubMed ID: 12605871
    [No Abstract]   [Full Text] [Related]  

  • 23. Monovalent cation-induced conformational change in glucose oxidase leading to stabilization of the enzyme.
    Ahmad A; Akhtar MS; Bhakuni V
    Biochemistry; 2001 Feb; 40(7):1945-55. PubMed ID: 11329261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting bandwidth in the high-performance liquid chromatographic separation of large biomolecules. II. A general model for the four common high-performance liquid chromatography methods.
    Stadalius MA; Ghrist BF; Snyder LR
    J Chromatogr; 1987 Jan; 387():21-40. PubMed ID: 3558622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Huntingtin interacting protein HYPK is intrinsically unstructured.
    Raychaudhuri S; Majumder P; Sarkar S; Giri K; Mukhopadhyay D; Bhattacharyya NP
    Proteins; 2008 Jun; 71(4):1686-98. PubMed ID: 18076027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New insight into the binding interaction of hydroxylated carbon nanotubes with bovine serum albumin.
    Guan Y; Zhang H; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():556-63. PubMed ID: 24508894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mass spectrometric characterisation of proteins in rennet and in chymosin-based milk-clotting preparations.
    Lilla S; Caira S; Ferranti P; Addeo F
    Rapid Commun Mass Spectrom; 2001; 15(13):1101-12. PubMed ID: 11404847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteins in denaturing solvents: gel exclusion studies.
    Davison PF
    Science; 1968 Aug; 161(3844):906-7. PubMed ID: 5667524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensing of hydrophobic cavity of serum albumin by an adenosine analogue: fluorescence correlation and ensemble spectroscopic studies.
    Nag M; Bera K; Chakraborty S; Basak S
    J Photochem Photobiol B; 2013 Oct; 127():202-11. PubMed ID: 24061159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring orthogonal proteomic routines to understand protein separation during ion exchange chromatography.
    Cabrera R; Zhelyazkova P; Galvis L; Fernandez-Lahore M
    J Sep Sci; 2008 Jul; 31(13):2500-10. PubMed ID: 18646262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of mass loadability, protein concentration and n-alkyl chain length on the reversed-phase high-performance liquid chromatographic behaviour of bovine serum albumin and bovine follicular fluid inhibin.
    de Vos FL; Robertson DM; Hearn MT
    J Chromatogr; 1987 Apr; 392():17-32. PubMed ID: 3597571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Limited hydrolysis of bovine plasma albumin at neutral and alkaline pH catalyzed by associated proteinases.
    Aoki K; Foster JF
    Biochemistry; 1975 Aug; 14(16):3566-72. PubMed ID: 240384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The rotational diffusion of bovine -lactalbumin: a comparison with egg white lysozyme.
    Rawitch AB
    Arch Biochem Biophys; 1972 Jul; 151(1):22-7. PubMed ID: 5065170
    [No Abstract]   [Full Text] [Related]  

  • 34. Structural analysis of peptide fragments following the hydrolysis of bovine serum albumin by trypsin and chymotrypsin.
    Özyiğit İE; Akten ED; Pekcan Ö
    J Biomol Struct Dyn; 2016 May; 34(5):1092-100. PubMed ID: 26169062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal behavior of proteins in high-performance hydrophobic-interaction chromatography. On-line spectroscopic and chromatographic characterization.
    Wu SL; Benedek K; Karger BL
    J Chromatogr; 1986 May; 359():3-17. PubMed ID: 3015998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ion-exchange equilibria of lysozyme, myoglobin and bovine serum albumin. Effective valence and exchanger capacity.
    Whitley RD; Wachter R; Liu F; Wang NH
    J Chromatogr; 1989 Mar; 465(2):137-56. PubMed ID: 2745597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calorimetric and structural investigation of the interaction between bovine serum albumin and high molecular weight dextran in water.
    Antonov YA; Wolf BA
    Biomacromolecules; 2005; 6(6):2980-9. PubMed ID: 16283717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solid state fluorescence of lyophilized proteins.
    Ramachander R; Jiang Y; Li C; Eris T; Young M; Dimitrova M; Narhi L
    Anal Biochem; 2008 May; 376(2):173-82. PubMed ID: 18328251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrophobic interaction chromatography of proteins V. Quantitative assessment of conformational changes.
    Ueberbacher R; Haimer E; Hahn R; Jungbauer A
    J Chromatogr A; 2008 Jul; 1198-1199():154-63. PubMed ID: 18541249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the tryptophan content of proteins by ion exchange chromatography of alkaline hydrolysates.
    Hugli TE; Moore S
    J Biol Chem; 1972 May; 247(9):2828-34. PubMed ID: 4554361
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.