These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36548979)

  • 21. Silver uptake by a marine diatom and its transfer to the coastal copepod Acartia spinicauda.
    Xu Y; Wang WX
    Environ Toxicol Chem; 2004 Mar; 23(3):682-90. PubMed ID: 15285362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How much crude oil can zooplankton ingest? Estimating the quantity of dispersed crude oil defecated by planktonic copepods.
    Almeda R; Connelly TL; Buskey EJ
    Environ Pollut; 2016 Jan; 208(Pt B):645-54. PubMed ID: 26586632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences in recruitment and life-history strategy alter zooplankton spring dynamics under climate-change conditions.
    Ekvall MK; Hansson LA
    PLoS One; 2012; 7(9):e44614. PubMed ID: 22970267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactive effects of extreme temperature and a widespread coastal metal contaminant reduce the fitness of a common tropical copepod across generations.
    Dinh KV; Nguyen QTT; Vo TM; Bui TB; Dao TS; Tran DM; Doan NX; Truong TSH; Wisz MS; Nielsen TG; Vu MTT; Le MH
    Mar Pollut Bull; 2020 Oct; 159():111509. PubMed ID: 32763562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Advances in copepod resting egg ecology in estuarine and coastal waters].
    Wang Q; Luan LL; Chen LD; Yang YF
    Ying Yong Sheng Tai Xue Bao; 2015 Jul; 26(7):2213-24. PubMed ID: 26710652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment.
    Feng Z; Ji R; Ashjian C; Campbell R; Zhang J
    Glob Chang Biol; 2018 Jan; 24(1):e159-e170. PubMed ID: 28869698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detecting in situ copepod diet diversity using molecular technique: development of a copepod/symbiotic ciliate-excluding eukaryote-inclusive PCR protocol.
    Hu S; Guo Z; Li T; Carpenter EJ; Liu S; Lin S
    PLoS One; 2014; 9(7):e103528. PubMed ID: 25058323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale metabarcoding analysis of epipelagic and mesopelagic copepods in the Pacific.
    Hirai J; Tachibana A; Tsuda A
    PLoS One; 2020; 15(5):e0233189. PubMed ID: 32407365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decadal changes in zooplankton abundance and phenology of Long Island Sound reflect interacting changes in temperature and community composition.
    Rice E; Stewart G
    Mar Environ Res; 2016 Sep; 120():154-65. PubMed ID: 27552121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nucleic acid content in crustacean zooplankton: bridging metabolic and stoichiometric predictions.
    Bullejos FJ; Carrillo P; Gorokhova E; Medina-Sánchez JM; Villar-Argaiz M
    PLoS One; 2014; 9(1):e86493. PubMed ID: 24466118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct and indirect effects of the fungicide azoxystrobin in outdoor brackish water microcosms.
    Gustafsson K; Blidberg E; Elfgren IK; Hellström A; Kylin H; Gorokhova E
    Ecotoxicology; 2010 Feb; 19(2):431-44. PubMed ID: 19830551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Species composition and distribution characteristics of pelagic copepods in the Northern Sea of Fujian during withdraw of Zhe-Min coastal current].
    Wang YG; Lin JH; Wang CG; Lin M
    Huan Jing Ke Xue; 2012 Jun; 33(6):1839-45. PubMed ID: 22946163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of marine copepod outfluxes: nature, rate, fate and role in the carbon and nitrogen cycles.
    Frangoulis C; Christou ED; Hecq JH
    Adv Mar Biol; 2005; 47():253-309. PubMed ID: 15596169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.
    Garzke J; Ismar SMH; Sommer U
    Oecologia; 2015 Mar; 177(3):849-860. PubMed ID: 25413864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ocean Acidification Affects the Phyto-Zoo Plankton Trophic Transfer Efficiency.
    Cripps G; Flynn KJ; Lindeque PK
    PLoS One; 2016; 11(4):e0151739. PubMed ID: 27082737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Climate impact on plankton ecosystems in the Northeast Atlantic.
    Richardson AJ; Schoeman DS
    Science; 2004 Sep; 305(5690):1609-12. PubMed ID: 15361622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calanoid copepod zooplankton density is positively associated with water residence time across the continental United States.
    Doubek JP; Carey CC; Lavender M; Winegardner AK; Beaulieu M; Kelly PT; Pollard AI; Straile D; Stockwell JD
    PLoS One; 2019; 14(1):e0209567. PubMed ID: 30625172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Some ecological implications of a neem (azadirachtin) insecticide disturbance to zooplankton communities in forest pond enclosures.
    Kreutzweiser DP; Sutton TM; Back RC; Pangle KL; Thompson DG
    Aquat Toxicol; 2004 Apr; 67(3):239-54. PubMed ID: 15063074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissolved Organic Nitrogen Inputs from Wastewater Treatment Plant Effluents Increase Responses of Planktonic Metabolic Rates to Warming.
    Vaquer-Sunyer R; Conley DJ; Muthusamy S; Lindh MV; Pinhassi J; Kritzberg ES
    Environ Sci Technol; 2015 Oct; 49(19):11411-20. PubMed ID: 26356812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separating Thermal and Viscous Effects of Temperature on Copepod Respiration and Energy Budget.
    Tyrell AS; Fisher NS; Fields DM
    Biol Bull; 2020 Aug; 239(1):62-71. PubMed ID: 32812813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.