These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 36549003)
21. Thermoelectric performance of a metastable thin-film Heusler alloy. Hinterleitner B; Knapp I; Poneder M; Shi Y; Müller H; Eguchi G; Eisenmenger-Sittner C; Stöger-Pollach M; Kakefuda Y; Kawamoto N; Guo Q; Baba T; Mori T; Ullah S; Chen XQ; Bauer E Nature; 2019 Dec; 576(7785):85-90. PubMed ID: 31723266 [TBL] [Abstract][Full Text] [Related]
22. Enhancement of thermoelectric performance of a nanoribbon made ofα-T3lattice. Alam MW; Souayeh B; Islam SF J Phys Condens Matter; 2019 Sep; 31(48):. PubMed ID: 31489844 [TBL] [Abstract][Full Text] [Related]
24. Giant thermoelectric effect in graphene-based topological insulators with heavy adatoms and nanopores. Chang PH; Bahramy MS; Nagaosa N; Nikolić BK Nano Lett; 2014 Jul; 14(7):3779-84. PubMed ID: 24932511 [TBL] [Abstract][Full Text] [Related]
25. Thermoelectric properties of heavy fermion CeRhIn Yazdani-Kachoei M; Jalali-Asadabadi S RSC Adv; 2019 Nov; 9(62):36182-36197. PubMed ID: 35540618 [TBL] [Abstract][Full Text] [Related]
26. Strain engineering of polar optical phonon scattering mechanism - an effective way to optimize the power-factor and lattice thermal conductivity of ScN. Panneerselvam IR; Kim MH; Baldo C; Wang Y; Sahasranaman M Phys Chem Chem Phys; 2021 Oct; 23(40):23288-23302. PubMed ID: 34632991 [TBL] [Abstract][Full Text] [Related]
27. Large Mechanosensitive Thermoelectric Enhancement in Metallo-Organic Magnetic Molecules. Alsaqer M; Daaoub AHS; Sangtarash S; Sadeghi H Nano Lett; 2023 Dec; 23(23):10719-10724. PubMed ID: 37988562 [TBL] [Abstract][Full Text] [Related]
28. The Thermoelectric Properties of Monolayer MAs Wei QL; Yang HY; Wu YY; Liu YB; Li YH Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33081158 [TBL] [Abstract][Full Text] [Related]
29. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Fei R; Faghaninia A; Soklaski R; Yan JA; Lo C; Yang L Nano Lett; 2014 Nov; 14(11):6393-9. PubMed ID: 25254626 [TBL] [Abstract][Full Text] [Related]
30. Tuning phononic and electronic contributions of thermoelectric in defected S-shape graphene nanoribbons. Bazrafshan MA; Khoeini F Sci Rep; 2022 Nov; 12(1):18419. PubMed ID: 36319726 [TBL] [Abstract][Full Text] [Related]
31. Strategies to Improve the Thermoelectric Figure of Merit in Thermoelectric Functional Materials. Sun Y; Liu Y; Li R; Li Y; Bai S Front Chem; 2022; 10():865281. PubMed ID: 35665061 [TBL] [Abstract][Full Text] [Related]
32. The spin-dependent properties of silicon carbide/graphene nanoribbons junctions with vacancy defects. Khanlar G; Vishkayi SI; Soleimani HR Sci Rep; 2021 Dec; 11(1):23879. PubMed ID: 34903793 [TBL] [Abstract][Full Text] [Related]
34. Enhancement of the thermoelectric figure of merit in DNA-like systems induced by Fano and Dicke effects. Fu HH; Gu L; Wu DD; Zhang ZQ Phys Chem Chem Phys; 2015 Apr; 17(16):11077-87. PubMed ID: 25826287 [TBL] [Abstract][Full Text] [Related]
35. Energy Harvesting from a Thermoelectric Zinc Antimonide Thin Film under Steady and Unsteady Operating Conditions. Mirhosseini M; Rezania A; Iversen B; Rosendahl L Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30477227 [TBL] [Abstract][Full Text] [Related]
36. A thin film efficient pn-junction thermoelectric device fabricated by self-align shadow mask. Kogo G; Xiao B; Danquah S; Lee H; Niyogushima J; Yarbrough K; Candadai A; Marconnet A; Pradhan SK; Bahoura M Sci Rep; 2020 Jan; 10(1):1067. PubMed ID: 31974476 [TBL] [Abstract][Full Text] [Related]
37. Thermoelectric effect in a single molecular junction with a vibrational mode. Zhang MM; Ding GH; Dong B J Phys Condens Matter; 2021 Sep; 33(47):. PubMed ID: 34438374 [TBL] [Abstract][Full Text] [Related]