These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 36549007)
1. Computing the Differences between Asn-X and Gln-X Deamidation and Their Impact on Pharmaceutical and Physiological Proteins: A Theoretical Investigation Using Model Dipeptides. Lawson KE; Evans MN; Dekle JK; Adamczyk AJ J Phys Chem A; 2023 Jan; 127(1):57-70. PubMed ID: 36549007 [TBL] [Abstract][Full Text] [Related]
2. Deamidation Reactions of Asparagine- and Glutamine-Containing Dipeptides Investigated by Ion Spectroscopy. Kempkes LJ; Martens J; Grzetic J; Berden G; Oomens J J Am Soc Mass Spectrom; 2016 Nov; 27(11):1855-1869. PubMed ID: 27624159 [TBL] [Abstract][Full Text] [Related]
3. The effects of a histidine residue on the C-terminal side of an asparaginyl residue on the rate of deamidation using model pentapeptides. Goolcharran C; Stauffer LL; Cleland JL; Borchardt RT J Pharm Sci; 2000 Jun; 89(6):818-25. PubMed ID: 10824141 [TBL] [Abstract][Full Text] [Related]
4. Application of protein N-terminal amidase in enzymatic synthesis of dipeptides containing acidic amino acids specifically at the N-terminus. Arai T; Noguchi A; Takano E; Kino K J Biosci Bioeng; 2013 Apr; 115(4):382-7. PubMed ID: 23218487 [TBL] [Abstract][Full Text] [Related]
5. Effect of deamidation on stability for the collagen to gelatin transition. Silva T; Kirkpatrick A; Brodsky B; Ramshaw JA J Agric Food Chem; 2005 Oct; 53(20):7802-6. PubMed ID: 16190633 [TBL] [Abstract][Full Text] [Related]
6. Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins. Wright HT Protein Eng; 1991 Feb; 4(3):283-94. PubMed ID: 1649998 [TBL] [Abstract][Full Text] [Related]
7. Influence of a Hydroxyl Group on the Deamidation and Dehydration Reactions of Protonated Asparagine-Serine Investigated by Combined Spectroscopic, Guided Ion Beam, and Theoretical Approaches. Boles GC; Kempkes LJM; Martens J; Berden G; Oomens J; Armentrout PB J Am Soc Mass Spectrom; 2021 Mar; 32(3):786-805. PubMed ID: 33570934 [TBL] [Abstract][Full Text] [Related]
8. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides. Tyler-Cross R; Schirch V J Biol Chem; 1991 Nov; 266(33):22549-56. PubMed ID: 1939272 [TBL] [Abstract][Full Text] [Related]
9. Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization. Wakankar AA; Borchardt RT J Pharm Sci; 2006 Nov; 95(11):2321-36. PubMed ID: 16960822 [TBL] [Abstract][Full Text] [Related]
10. Protein asparagine deamidation prediction based on structures with machine learning methods. Jia L; Sun Y PLoS One; 2017; 12(7):e0181347. PubMed ID: 28732052 [TBL] [Abstract][Full Text] [Related]
11. Deamidation of peptides in aerobic nitric oxide solution by a nitrosative pathway. Kong L; Saavedra JE; Buzard GS; Xu X; Hood BL; Conrads TP; Veenstra TD; Keefer LK Nitric Oxide; 2006 Mar; 14(2):144-51. PubMed ID: 16249103 [TBL] [Abstract][Full Text] [Related]
12. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides. Patel K; Borchardt RT Pharm Res; 1990 Aug; 7(8):787-93. PubMed ID: 2235875 [TBL] [Abstract][Full Text] [Related]
13. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid. Catak S; Monard G; Aviyente V; Ruiz-López MF J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962 [TBL] [Abstract][Full Text] [Related]
14. Reaction mechanism of deamidation of asparaginyl residues in peptides: effect of solvent molecules. Catak S; Monard G; Aviyente V; Ruiz-López MF J Phys Chem A; 2006 Jul; 110(27):8354-65. PubMed ID: 16821819 [TBL] [Abstract][Full Text] [Related]
15. Kinetics and mechanisms of deamidation and covalent amide-linked adduct formation in amorphous lyophiles of a model asparagine-containing Peptide. Dehart MP; Anderson BD Pharm Res; 2012 Oct; 29(10):2722-37. PubMed ID: 22006203 [TBL] [Abstract][Full Text] [Related]
16. Effects of acidic N + 1 residues on asparagine deamidation rates in solution and in the solid state. Li B; Gorman EM; Moore KD; Williams T; Schowen RL; Topp EM; Borchardt RT J Pharm Sci; 2005 Mar; 94(3):666-75. PubMed ID: 15668945 [TBL] [Abstract][Full Text] [Related]
17. Inhibitory behavior and adsorption of asparagine dipeptide amino acid on the Fe(111) surface. Hussein AM; Abbas ZS; Kadhim MM; Rheima AM; Barzan M; Al-Attia LH; Elameer AS; Hachim SK; Hadi MA J Mol Model; 2023 Apr; 29(5):162. PubMed ID: 37118157 [TBL] [Abstract][Full Text] [Related]
18. Structure Based Prediction of Asparagine Deamidation Propensity in Monoclonal Antibodies. Yan Q; Huang M; Lewis MJ; Hu P MAbs; 2018; 10(6):901-912. PubMed ID: 29958069 [TBL] [Abstract][Full Text] [Related]
19. Characterization of asparagine 330 deamidation in an Fc-fragment of IgG1 using cation exchange chromatography and peptide mapping. Zhang YT; Hu J; Pace AL; Wong R; Wang YJ; Kao YH J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Aug; 965():65-71. PubMed ID: 24999246 [TBL] [Abstract][Full Text] [Related]
20. Computational Studies on the Nonenzymatic Deamidation Mechanisms of Glutamine Residues. Kato K; Nakayoshi T; Kurimoto E; Oda A ACS Omega; 2019 Feb; 4(2):3508-3513. PubMed ID: 31459565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]