BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36549176)

  • 1. Life cycle assessment of alternative biogas utilisations, including carbon capture and storage or utilisation.
    Varling AS; Christensen TH; Bisinella V
    Waste Manag; 2023 Feb; 157():168-179. PubMed ID: 36549176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Techno-economic evaluation of GHG emissions mitigation of biomethane upgrading technologies.
    Agostini A; Buffi M; Hurtig O; Carbone C; Zanoni F; Monteleone G
    J Environ Manage; 2024 Jul; 364():121459. PubMed ID: 38870798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle environmental impacts of biogas production and utilisation substituting for grid electricity, natural gas grid and transport fuels.
    Natividad Pérez-Camacho M; Curry R; Cromie T
    Waste Manag; 2019 Jul; 95():90-101. PubMed ID: 31351658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental assessment of carbon capture and storage (CCS) as a post-treatment technology in waste incineration.
    Bisinella V; Hulgaard T; Riber C; Damgaard A; Christensen TH
    Waste Manag; 2021 Jun; 128():99-113. PubMed ID: 33975140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: A review.
    Wang Y; Pan Z; Zhang W; Borhani TN; Li R; Zhang Z
    Environ Res; 2022 May; 207():112219. PubMed ID: 34656638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the environmental impacts of biogas utilization for energy production through life cycle assessment: An action towards reducing emissions.
    Alengebawy A; Mohamed BA; Ghimire N; Jin K; Liu T; Samer M; Ai P
    Environ Res; 2022 Oct; 213():113632. PubMed ID: 35700765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change impacts of introducing carbon capture and utilisation (CCU) in waste incineration.
    Christensen TH; Bisinella V
    Waste Manag; 2021 May; 126():754-770. PubMed ID: 33887697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost and Life-Cycle Greenhouse Gas Implications of Integrating Biogas Upgrading and Carbon Capture Technologies in Cellulosic Biorefineries.
    Yang M; Baral NR; Anastasopoulou A; Breunig HM; Scown CD
    Environ Sci Technol; 2020 Oct; 54(20):12810-12819. PubMed ID: 33030339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overview of recent progress in exogenous hydrogen supply biogas upgrading and future perspective.
    Sun ZF; Zhao L; Wu KK; Wang ZH; Wu JT; Chen C; Yang SS; Wang AJ; Ren NQ
    Sci Total Environ; 2022 Nov; 848():157824. PubMed ID: 35931172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bringing value to the chemical industry from capture, storage and use of CO
    Aldaco R; Butnar I; Margallo M; Laso J; Rumayor M; Dominguez-Ramos A; Irabien A; Dodds PE
    Sci Total Environ; 2019 May; 663():738-753. PubMed ID: 30738256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biowaste-to-Biomethane: An LCA study on biogas and syngas roads.
    Ardolino F; Arena U
    Waste Manag; 2019 Mar; 87():441-453. PubMed ID: 31109545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ Biogas Upgrading by CO
    Fu S; Angelidaki I; Zhang Y
    Trends Biotechnol; 2021 Apr; 39(4):336-347. PubMed ID: 32917407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental assessment of amending the Amager Bakke incineration plant in Copenhagen with carbon capture and storage.
    Bisinella V; Nedenskov J; Riber C; Hulgaard T; Christensen TH
    Waste Manag Res; 2022 Jan; 40(1):79-95. PubMed ID: 34585637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate change impacts of bioenergy technologies: A comparative consequential LCA of sustainable fuels production with CCUS.
    Krogh A; Junginger M; Shen L; Grue J; Pedersen TH
    Sci Total Environ; 2024 Aug; 940():173660. PubMed ID: 38834100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental and energetic analysis of coupling a biogas combined cycle power plant with carbon capture, organic Rankine cycles and CO
    Esquivel-Patiño GG; Nápoles-Rivera F
    J Environ Manage; 2021 Dec; 300():113746. PubMed ID: 34562822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Market Potential for CO
    Wong J; Santoso J; Went M; Sanchez D
    Environ Sci Technol; 2022 Apr; 56(7):4305-4316. PubMed ID: 35255216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel material-oriented valorization of biogas can achieve more carbon reduction than traditional utilization by bioelectricity or biomethane.
    Guo J; He P; Wu H; Xi Y; Li C; Zhang H; Zhou J; Liao J; Lü F
    Bioresour Technol; 2024 Mar; 395():130333. PubMed ID: 38244938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A life cycle assessment of coal-fired thermal power plants with post-combustion control techniques: an India scenario.
    Malode S; Prakash R; Mohanta JC
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90639-90655. PubMed ID: 37462868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Electrolytic Capture, Separation and Regeneration of CO
    Jin X; Zhang Y; Li X; Zhao N; Angelidaki I
    Environ Sci Technol; 2017 Aug; 51(16):9371-9378. PubMed ID: 28728410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life cycle assessment of biomethane use in Argentina.
    Morero B; Groppelli E; Campanella EA
    Bioresour Technol; 2015 Apr; 182():208-216. PubMed ID: 25700340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.