BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36549188)

  • 1. Effects of water constituents on the stability of gas diffusion electrode during electrochemical hydrogen peroxide production for water and wastewater treatment.
    Ma Y; Zhao E; Xia G; Zhan J; Yu G; Wang Y
    Water Res; 2023 Feb; 229():119503. PubMed ID: 36549188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.
    Barazesh JM; Hennebel T; Jasper JT; Sedlak DL
    Environ Sci Technol; 2015 Jun; 49(12):7391-9. PubMed ID: 26039560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of hydrogen peroxide production by electrochemical reduction of oxygen on carbon nanotubes modified with fluorine.
    Wang W; Lu X; Su P; Li Y; Cai J; Zhang Q; Zhou M; Arotiba O
    Chemosphere; 2020 Nov; 259():127423. PubMed ID: 32574847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trans-electrode pressure of gas-diffusion electrodes significantly influencing the electrochemical hydrogen peroxide production.
    Xu A; Yang Z; Zhou Z; Yang P; Yu Y; Liu J; Zhang Y
    Chemosphere; 2024 Aug; 361():142464. PubMed ID: 38810795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen reduction reaction electrocatalysis inducing Fenton-like processes with enhanced electrocatalytic performance based on mesoporous ZnO/CuO cathodes: Treatment of organic wastewater and catalytic principle.
    Zhou Y; Zhang Y; Li Z; Hao C; Wang Y; Li Y; Dang Y; Sun X; Han G; Fu Y
    Chemosphere; 2020 Nov; 259():127463. PubMed ID: 32599388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of recalcitrant organic matter content in wastewater by means of AOPs aiming industrial water reuse.
    Souza BM; Souza BS; Guimarães TM; Ribeiro TF; Cerqueira AC; Sant'Anna GL; Dezotti M
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22947-22956. PubMed ID: 27578092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of high concentrations of H2O2 in a bioelectrochemical reactor fed with real municipal wastewater.
    Modin O; Fukushi K
    Environ Technol; 2013; 34(17-20):2737-42. PubMed ID: 24527636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Fenton-based treatment of tetracaine in synthetic and urban wastewater using active and non-active anodes.
    Ridruejo C; Centellas F; Cabot PL; Sirés I; Brillas E
    Water Res; 2018 Jan; 128():71-81. PubMed ID: 29091806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pilot scale of electrochemical integrated treatment technology and equipment driven by solar energy for decentralized domestic sewage treatment.
    Zhang Q; Wang X; Liang R; Xie J; Zhou M
    Chemosphere; 2023 Nov; 340():139991. PubMed ID: 37640212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of multi-walled carbon nanotubes and carbon black co-modified graphite felt cathode for amoxicillin removal by electrochemical advanced oxidation processes under mild pH condition.
    Pan G; Sun X; Sun Z
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):8231-8247. PubMed ID: 31900780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial electrochemical systems for hydrogen peroxide synthesis: Critical review of process optimization, prospective environmental applications, and challenges.
    Chung TH; Meshref MNA; Hai FI; Al-Mamun A; Dhar BR
    Bioresour Technol; 2020 Oct; 313():123727. PubMed ID: 32646578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: photolysis and catalytic wet oxidation.
    Rueda-Márquez JJ; Sillanpää M; Pocostales P; Acevedo A; Manzano MA
    Water Res; 2015 Mar; 71():85-96. PubMed ID: 25600300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-treatment of refinery wastewater effluent using a combination of AOPs (H2O2 photolysis and catalytic wet peroxide oxidation) for possible water reuse. Comparison of low and medium pressure lamp performance.
    Rueda-Márquez JJ; Levchuk I; Salcedo I; Acevedo-Merino A; Manzano MA
    Water Res; 2016 Mar; 91():86-96. PubMed ID: 26773490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of water matrix components and peroxide sources on the transformation products and toxicity of tebuthiuron under UVC-based advanced oxidation processes.
    Gonçalves BR; Della-Flora A; Sirtori C; Sousa RMF; V M Starling MC; Sánchez Pérez JA; Saggioro EM; Sales Junior SF; Trovó AG
    Sci Total Environ; 2023 Feb; 859(Pt 1):160120. PubMed ID: 36370797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electro-peroxone process for the abatement of emerging contaminants: Mechanisms, recent advances, and prospects.
    Wang Y; Yu G; Deng S; Huang J; Wang B
    Chemosphere; 2018 Oct; 208():640-654. PubMed ID: 29894965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated carbon filled in a microporous titanium-foam air diffusion electrode for boosting H
    Deng F; Yang S; Jing B; Qiu S
    Chemosphere; 2023 Apr; 321():138147. PubMed ID: 36796525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fenton treatment of bio-treated fermentation-based pharmaceutical wastewater: removal and conversion of organic pollutants as well as estimation of operational costs.
    Cheng Y; Chen Y; Lu J; Nie J; Liu Y
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):12083-12095. PubMed ID: 29453721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyl Radical Production via a Reaction of Electrochemically Generated Hydrogen Peroxide and Atomic Hydrogen: An Effective Process for Contaminant Oxidation?
    Li Y; Miller CJ; Wu L; Waite TD
    Environ Sci Technol; 2022 May; 56(9):5820-5829. PubMed ID: 35442646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen peroxide generation from O
    Zhou W; Meng X; Gao J; Alshawabkeh AN
    Chemosphere; 2019 Jun; 225():588-607. PubMed ID: 30903840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.
    Li W; Lu S; Qiu Z; Lin K
    Environ Technol; 2011 Jul; 32(9-10):1063-71. PubMed ID: 21882559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.