These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 36549468)

  • 1. Superior Fidelity and Distinct Editing Outcomes of SaCas9 Compared with SpCas9 in Genome Editing.
    Yang ZX; Fu YW; Zhao JJ; Zhang F; Li SA; Zhao M; Wen W; Zhang L; Cheng T; Zhang JP; Zhang XB
    Genomics Proteomics Bioinformatics; 2023 Dec; 21(6):1206-1220. PubMed ID: 36549468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9.
    Kaya H; Mikami M; Endo A; Endo M; Toki S
    Sci Rep; 2016 May; 6():26871. PubMed ID: 27226350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using
    Zhang Y; Cai Y; Sun S; Han T; Chen L; Hou W
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The Development of SpCas9 Variants with High Specificity and Efficiency Based on the HH Theory].
    Wang GH; Wang CM; Wu XJ; Chu T; Huang DW; Li J
    Mol Biol (Mosk); 2024; 58(1):157-159. PubMed ID: 38943587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal Structure of Staphylococcus aureus Cas9.
    Nishimasu H; Cong L; Yan WX; Ran FA; Zetsche B; Li Y; Kurabayashi A; Ishitani R; Zhang F; Nureki O
    Cell; 2015 Aug; 162(5):1113-26. PubMed ID: 26317473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into a high fidelity variant of SpCas9.
    Guo M; Ren K; Zhu Y; Tang Z; Wang Y; Zhang B; Huang Z
    Cell Res; 2019 Mar; 29(3):183-192. PubMed ID: 30664728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Production of Gene-Modified Mice using Staphylococcus aureus Cas9.
    Zhang X; Liang P; Ding C; Zhang Z; Zhou J; Xie X; Huang R; Sun Y; Sun H; Zhang J; Xu Y; Songyang Z; Huang J
    Sci Rep; 2016 Sep; 6():32565. PubMed ID: 27586692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Human Genome Editing Using SaCas9 Ribonucleoprotein Complexes.
    Wang Y; Wang B; Xie H; Ren Q; Liu X; Li F; Lv X; He X; Cheng C; Deng R; Li J; Zhao J; Song Z; Gu F
    Biotechnol J; 2019 Jul; 14(7):e1800689. PubMed ID: 30927491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delivering SaCas9 mRNA by lentivirus-like bionanoparticles for transient expression and efficient genome editing.
    Lu B; Javidi-Parsijani P; Makani V; Mehraein-Ghomi F; Sarhan WM; Sun D; Yoo KW; Atala ZP; Lyu P; Atala A
    Nucleic Acids Res; 2019 May; 47(8):e44. PubMed ID: 30759231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rationally engineered
    Tan Y; Chu AHY; Bao S; Hoang DA; Kebede FT; Xiong W; Ji M; Shi J; Zheng Z
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20969-20976. PubMed ID: 31570596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding the Genome-Editing Toolbox with
    Nakamura A; Yamamoto H; Yano T; Hasegawa R; Makino Y; Mitsuda N; Terakawa T; Ito S; Sugano SS
    CRISPR J; 2024 Aug; 7(4):197-209. PubMed ID: 39111827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion.
    Shou J; Li J; Liu Y; Wu Q
    Mol Cell; 2018 Aug; 71(4):498-509.e4. PubMed ID: 30033371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks.
    Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Selection of CRISPR-Cas9 Guide RNAs for Homology-Directed Genome Editing.
    Tatiossian KJ; Clark RDE; Huang C; Thornton ME; Grubbs BH; Cannon PM
    Mol Ther; 2021 Mar; 29(3):1057-1069. PubMed ID: 33160457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Selection of CRISPR-Cas Triggering Homology-Directed Repair in Human Cells.
    Li F; Zhou C; Tu T; Liu Y; Lv X; Wang B; Song Z; Zhao Q; Liu C; Gu F; Zhao J
    Hum Gene Ther; 2021 Mar; 32(5-6):302-309. PubMed ID: 33323021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.