BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 36549468)

  • 21. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
    Mekler V; Kuznedelov K; Severinov K
    J Biol Chem; 2020 May; 295(19):6509-6517. PubMed ID: 32241913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Vivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Animal Models.
    Yin C; Zhang T; Qu X; Zhang Y; Putatunda R; Xiao X; Li F; Xiao W; Zhao H; Dai S; Qin X; Mo X; Young WB; Khalili K; Hu W
    Mol Ther; 2017 May; 25(5):1168-1186. PubMed ID: 28366764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells.
    Tycko J; Barrera LA; Huston NC; Friedland AE; Wu X; Gootenberg JS; Abudayyeh OO; Myer VE; Wilson CJ; Hsu PD
    Nat Commun; 2018 Jul; 9(1):2962. PubMed ID: 30054474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Target-Specific Precision of CRISPR-Mediated Genome Editing.
    Chakrabarti AM; Henser-Brownhill T; Monserrat J; Poetsch AR; Luscombe NM; Scaffidi P
    Mol Cell; 2019 Feb; 73(4):699-713.e6. PubMed ID: 30554945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-depth assessment of the PAM compatibility and editing activities of Cas9 variants.
    Zhang W; Yin J; Zhang-Ding Z; Xin C; Liu M; Wang Y; Ai C; Hu J
    Nucleic Acids Res; 2021 Sep; 49(15):8785-8795. PubMed ID: 34133740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci.
    Chen B; Hu J; Almeida R; Liu H; Balakrishnan S; Covill-Cooke C; Lim WA; Huang B
    Nucleic Acids Res; 2016 May; 44(8):e75. PubMed ID: 26740581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9.
    Feng Y; Chen C; Han Y; Chen Z; Lu X; Liang F; Li S; Qin W; Lin S
    G3 (Bethesda); 2016 Aug; 6(8):2517-21. PubMed ID: 27317783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Structure-based optimization and design of CRISPR protein xCas9].
    Xue D; Zhu H; Du W; Tang H; Huang Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1385-1395. PubMed ID: 33973451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic in vitro specificity profiling reveals nicking defects in natural and engineered CRISPR-Cas9 variants.
    Murugan K; Suresh SK; Seetharam AS; Severin AJ; Sashital DG
    Nucleic Acids Res; 2021 Apr; 49(7):4037-4053. PubMed ID: 33744974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and Analysis of Small Molecule Inhibitors of CRISPR-Cas9 in Human Cells.
    Yang Y; Li D; Wan F; Chen B; Wu G; Li F; Ren Y; Liang P; Wan J; Songyang Z
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA-Guided
    Ittiprasert W; Chatupheeraphat C; Mann VH; Li W; Miller A; Ogunbayo T; Tran K; Alrefaei YN; Mentink-Kane M; Brindley PJ
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos.
    Meshalkina DA; Glushchenko AS; Kysil EV; Mizgirev IV; Frolov A
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32635161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical Control of Genome Editing by Photoactivatable Cas9.
    Otabe T; Nihongaki Y; Sato M
    Methods Mol Biol; 2021; 2312():225-233. PubMed ID: 34228293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM.
    Endo M; Mikami M; Endo A; Kaya H; Itoh T; Nishimasu H; Nureki O; Toki S
    Nat Plants; 2019 Jan; 5(1):14-17. PubMed ID: 30531939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas nucleases and base editors for plant genome editing.
    Gürel F; Zhang Y; Sretenovic S; Qi Y
    aBIOTECH; 2020 Jan; 1(1):74-87. PubMed ID: 36305010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A highly specific SpCas9 variant is identified by in vivo screening in yeast.
    Casini A; Olivieri M; Petris G; Montagna C; Reginato G; Maule G; Lorenzin F; Prandi D; Romanel A; Demichelis F; Inga A; Cereseto A
    Nat Biotechnol; 2018 Mar; 36(3):265-271. PubMed ID: 29431739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
    Edraki A; Mir A; Ibraheim R; Gainetdinov I; Yoon Y; Song CQ; Cao Y; Gallant J; Xue W; Rivera-Pérez JA; Sontheimer EJ
    Mol Cell; 2019 Feb; 73(4):714-726.e4. PubMed ID: 30581144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.