BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36549520)

  • 1. Investigating relationships between climate controls and nutrient flux in surface waters, sediments, and subsurface pathways in an agricultural clay catchment of the Great Lakes Basin.
    May H; Rixon S; Gardner S; Goel P; Levison J; Binns A
    Sci Total Environ; 2023 Mar; 864():160979. PubMed ID: 36549520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving model capability in simulating spatiotemporal variations and flow contributions of nitrate export in tile-drained catchments.
    Cao P; Lu C; Crumpton W; Helmers M; Green D; Stenback G
    Water Res; 2023 Oct; 244():120489. PubMed ID: 37651862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal variations of nitrogen and phosphorus in a clay plain hydrological system in the Great Lakes Basin.
    Rixon S; Levison J; Binns A; Persaud E
    Sci Total Environ; 2020 Apr; 714():136328. PubMed ID: 31986379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of agricultural drainage, storm-events, and natural filtration on the biogeochemical cycling capacity of aquatic and sediment environments in Lake Erie's drainage basin.
    Knorr S; Weisener CG; Phillips LA
    Sci Total Environ; 2023 Dec; 905():167102. PubMed ID: 37717759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crop growth, hydrology, and water quality dynamics in agricultural fields across the Western Lake Erie Basin: Multi-site verification of the Nutrient Tracking Tool (NTT).
    Guo T; Confesor R; Saleh A; King K
    Sci Total Environ; 2020 Jul; 726():138485. PubMed ID: 32315850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Important Role of Overland Flows and Tile Field Pathways in Nutrient Transport.
    Wan L; Kendall AD; Martin SL; Hamlin QF; Hyndman DW
    Environ Sci Technol; 2023 Nov; 57(44):17061-17075. PubMed ID: 37871005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and assessing water and nutrient balances in a tile-drained agricultural watershed in the U.S. Corn Belt.
    Ren D; Engel B; Mercado JAV; Guo T; Liu Y; Huang G
    Water Res; 2022 Feb; 210():117976. PubMed ID: 34953214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conventional and conservation tillage: influence on seasonal runoff, sediment, and nutrient losses in the Canadian Prairies.
    Tiessen KH; Elliott JA; Yarotski J; Lobb DA; Flaten DN; Glozier NE
    J Environ Qual; 2010; 39(3):964-80. PubMed ID: 20400592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water quality in a large complex catchment: Significant effects of land use and soil type but limited ability to detect trends.
    Sandström S; Lannergård EE; Futter MN; Djodjic F
    J Environ Manage; 2024 Jan; 349():119500. PubMed ID: 37951108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Economic development influences on sediment-bound nitrogen and phosphorus accumulation of lakes in China.
    Ni Z; Wang S
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18561-73. PubMed ID: 26385856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trade-offs in nutrient and sediment losses in tile drainage from no-till versus conventional conservation-till cropping systems.
    Macrae ML; Plach JM; Carlow R; Little C; Jarvie HP; McKague K; Pluer WT; Joosse P
    J Environ Qual; 2023; 52(5):1011-1023. PubMed ID: 37449773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of classification machine learning algorithms for characterizing nutrient transport in a clay plain agricultural watershed.
    Elsayed A; Rixon S; Levison J; Binns A; Goel P
    J Environ Manage; 2023 Nov; 345():118924. PubMed ID: 37678017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating agricultural best management practices in tile-drained subwatersheds of the Mackinaw River, Illinois.
    Lemke AM; Kirkham KG; Lindenbaum TT; Herbert ME; Tear TH; Perry WL; Herkert JR
    J Environ Qual; 2011; 40(4):1215-28. PubMed ID: 21712591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Watershed land use effects on lake water quality in Denmark.
    Nielsen A; Trolle D; Søndergaard M; Lauridsen TL; Bjerring R; Olesen JE; Jeppesen E
    Ecol Appl; 2012 Jun; 22(4):1187-200. PubMed ID: 22827127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term water quality monitoring in agricultural catchments in Sweden: Impact of climatic drivers on diffuse nutrient loads.
    Ezzati G; Kyllmar K; Barron J
    Sci Total Environ; 2023 Mar; 864():160978. PubMed ID: 36563753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting subsurface denitrification characteristics under temperate pasture lands and its implications for nutrient management in agricultural catchments.
    Rivas A; Singh R; Horne DJ; Roygard J; Matthews A; Hedley MJ
    J Environ Manage; 2020 Oct; 272():111067. PubMed ID: 32736232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change.
    Porcal P; Koprivnjak JF; Molot LA; Dillon PJ
    Environ Sci Pollut Res Int; 2009 Sep; 16(6):714-26. PubMed ID: 19462191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climatic and agricultural factors in nutrient exports from two watersheds in Ohio.
    Moog DB; Whiting PJ
    J Environ Qual; 2002; 31(1):72-83. PubMed ID: 11837447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Level and distribution of nutrients in the hyporheic zone of Lake Taihu (China) and potential drivers.
    Li Y; Wang Y; Xu C
    Water Environ Res; 2019 Sep; 91(9):926-939. PubMed ID: 31054178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.