These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36550054)

  • 1. In situ identification of surface sites in Cu-Pt bimetallic catalysts: Gas-induced metal segregation.
    Han T; Li Y; Cao Y; Lee I; Zhou X; Frenkel AI; Zaera F
    J Chem Phys; 2022 Dec; 157(23):234706. PubMed ID: 36550054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ IR spectroscopic studies of Ni surface segregation induced by CO adsorption on Cu-Ni/SiO2 bimetallic catalysts.
    Yao Y; Goodman DW
    Phys Chem Chem Phys; 2014 Feb; 16(8):3823-9. PubMed ID: 24435048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the Local Environment of Single-Atom Catalysts with X-ray Absorption Spectroscopy.
    Li Y; Frenkel AI
    Acc Chem Res; 2021 Jun; 54(11):2660-2669. PubMed ID: 33990137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles.
    Föttinger K; Rupprechter G
    Acc Chem Res; 2014 Oct; 47(10):3071-9. PubMed ID: 25247260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ag on Pt(111): Changes in Electronic and CO Adsorption Properties upon PtAg/Pt(111) Monolayer Surface Alloy Formation.
    Diemant T; Schüttler KM; Behm RJ
    Chemphyschem; 2015 Oct; 16(14):2943-52. PubMed ID: 26272080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ observations of the structural dynamics of platinum-cobalt-hydroxide nanocatalysts under CO oxidation.
    Huang L; Song X; Lin Y; Liu C; He W; Wang S; Long Z; Sun Z
    Nanoscale; 2020 Feb; 12(5):3273-3283. PubMed ID: 31971202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorbate-driven reactive interfacial Pt-NiO
    Kim J; Park WH; Doh WH; Lee SW; Noh MC; Gallet JJ; Bournel F; Kondoh H; Mase K; Jung Y; Mun BS; Park JY
    Sci Adv; 2018 Jul; 4(7):eaat3151. PubMed ID: 30027118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions.
    Tao F; Grass ME; Zhang Y; Butcher DR; Aksoy F; Aloni S; Altoe V; Alayoglu S; Renzas JR; Tsung CK; Zhu Z; Liu Z; Salmeron M; Somorjai GA
    J Am Chem Soc; 2010 Jun; 132(25):8697-703. PubMed ID: 20521788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared Studies on Bimetallic Copper/Nickel Catalysts Supported on Zirconia and Ceria/Zirconia.
    Kitla A; Safonova OV; Föttinger K
    Catal Letters; 2013 Jun; 143(6):517-530. PubMed ID: 23794790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation.
    Mu R; Fu Q; Xu H; Zhang H; Huang Y; Jiang Z; Zhang S; Tan D; Bao X
    J Am Chem Soc; 2011 Feb; 133(6):1978-86. PubMed ID: 21247156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breaking Continuously Packed Bimetallic Sites to Singly Dispersed on Nonmetallic Support for Efficient Hydrogen Production.
    Jiang T; Li Y; Tang Y; Zhang S; Le D; Rahman TS; Tao F
    ACS Appl Mater Interfaces; 2024 May; 16(17):21757-21770. PubMed ID: 38632669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium.
    Ramírez-Caballero GE; Ma Y; Callejas-Tovar R; Balbuena PB
    Phys Chem Chem Phys; 2010 Mar; 12(9):2209-18. PubMed ID: 20165770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the synergy between alloy and alloy-oxide interface for CO oxidation in bimetallic catalysts.
    Pan Y; Xu L; He W; Li H; Chen W; Sun Z
    Nanoscale; 2022 May; 14(19):7303-7313. PubMed ID: 35532914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles.
    Tao F; Grass ME; Zhang Y; Butcher DR; Renzas JR; Liu Z; Chung JY; Mun BS; Salmeron M; Somorjai GA
    Science; 2008 Nov; 322(5903):932-4. PubMed ID: 18845713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segregation of Pt(28)Rh(27) bimetallic nanoparticles: a first-principles study.
    Yuge K
    J Phys Condens Matter; 2010 Jun; 22(24):245401. PubMed ID: 21393781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogenation of 1-Nitroanthraquinone to 1-Aminoanthraquinone Catalyzed by Bimetallic CuPt
    Yang C; Wang A; Yin H
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5906-5913. PubMed ID: 30961757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared emission and theoretical study of carbon monoxide adsorbed on alumina-supported Rh, Ir, and Pt catalysts.
    Korányi TI; Mihály J; Pfeifer E; Németh C; Yuzhakova T; Mink J
    J Phys Chem A; 2006 Feb; 110(5):1817-23. PubMed ID: 16451013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of gas environment and heating on atomic structures of platinum nanoparticle catalysts for proton-exchange membrane fuel cells.
    Yoshida K; Zhang X; Shimada Y; Nagai Y; Hiroyama T; Tanaka N; Lari L; Ward MR; Boyes ED; Gai PL
    Nanotechnology; 2019 Apr; 30(17):175701. PubMed ID: 30641503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alloy formation and chemisorption at Zn/Pt(111) bimetallic surfaces using alkali ISS, XPD, and TPD.
    Ho CS; Martono E; Banerjee S; Roszell J; Vohs J; Koel BE
    J Phys Chem A; 2013 Nov; 117(46):11684-94. PubMed ID: 23697391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis.
    Strasser P; Koh S; Greeley J
    Phys Chem Chem Phys; 2008 Jul; 10(25):3670-83. PubMed ID: 18563228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.