BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36550057)

  • 1. Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method.
    Fedorov DG
    J Chem Phys; 2022 Dec; 157(23):231001. PubMed ID: 36550057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods.
    Morao I; Heifetz A; Fedorov DG
    Methods Mol Biol; 2020; 2114():143-148. PubMed ID: 32016891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Nakata H; Fedorov DG; Irle S
    J Phys Chem Lett; 2015 Dec; 6(24):5034-9. PubMed ID: 26623658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and accurate assessment of GPCR-ligand interactions Using the fragment molecular orbital-based density-functional tight-binding method.
    Morao I; Fedorov DG; Robinson R; Southey M; Townsend-Nicholson A; Bodkin MJ; Heifetz A
    J Comput Chem; 2017 Sep; 38(23):1987-1990. PubMed ID: 28675443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model.
    Nishimoto Y; Fedorov DG
    Phys Chem Chem Phys; 2016 Aug; 18(32):22047-61. PubMed ID: 27215663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding.
    Nishimoto Y; Fedorov DG
    J Chem Phys; 2018 Feb; 148(6):064115. PubMed ID: 29448787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Fedorov DG; Irle S
    J Chem Theory Comput; 2014 Nov; 10(11):4801-12. PubMed ID: 26584367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Applications of the Fragment Molecular Orbital Method in Drug Discovery].
    Ishikawa T
    Yakugaku Zasshi; 2016; 136(1):121-30. PubMed ID: 26725679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method.
    Nakata H; Nishimoto Y; Fedorov DG
    J Chem Phys; 2016 Jul; 145(4):044113. PubMed ID: 27475354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding.
    Vuong VQ; Nishimoto Y; Fedorov DG; Sumpter BG; Niehaus TA; Irle S
    J Chem Theory Comput; 2019 May; 15(5):3008-3020. PubMed ID: 30998360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method.
    Otsuka T; Okimoto N; Taiji M
    J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems.
    Tanaka S; Mochizuki Y; Komeiji Y; Okiyama Y; Fukuzawa K
    Phys Chem Chem Phys; 2014 Jun; 16(22):10310-44. PubMed ID: 24740821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring chemistry with the fragment molecular orbital method.
    Fedorov DG; Nagata T; Kitaura K
    Phys Chem Chem Phys; 2012 Jun; 14(21):7562-77. PubMed ID: 22410762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems.
    Nakata H; Fedorov DG; Yokojima S; Kitaura K; Sakurai M; Nakamura S
    J Chem Phys; 2014 Apr; 140(14):144101. PubMed ID: 24735282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2007 Aug; 111(30):6904-14. PubMed ID: 17511437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing Rhodopsin-Arrestin Interactions with the Fragment Molecular Orbital (FMO) Method.
    Heifetz A; Townsend-Nicholson A
    Methods Mol Biol; 2020; 2114():177-186. PubMed ID: 32016894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragment molecular orbital calculations for biomolecules.
    Fukuzawa K; Tanaka S
    Curr Opin Struct Biol; 2022 Feb; 72():127-134. PubMed ID: 34656048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Methods for Biochemical Simulations Implemented in GAMESS.
    Fedorov DG; Li H; Mironov V; Alexeev Y
    Methods Mol Biol; 2020; 2114():123-142. PubMed ID: 32016890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-Protein Interaction Modelling with the Fragment Molecular Orbital Method.
    Tanaka S
    Methods Mol Biol; 2023; 2552():295-305. PubMed ID: 36346599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.