These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36550088)
21. 13C-nuclear magnetic resonance studies of 85% 13C-enriched amino acids and small peptides. pH effects on the chemical shifts, coupling constants, kinetics of cis-trans isomerisation and conformation aspects. Fermandjian S; Tran-Dinh ; Savrda J; Sala E; Mermet-Bouvier R; Bricas E; Fromageot P Biochim Biophys Acta; 1975 Aug; 399(2):313-38. PubMed ID: 240412 [TBL] [Abstract][Full Text] [Related]
22. Impact of azaproline on Peptide conformation. Che Y; Marshall GR J Org Chem; 2004 Dec; 69(26):9030-42. PubMed ID: 15609935 [TBL] [Abstract][Full Text] [Related]
23. Effect of solvent on the cis-trans conformational equilibrium of a proline imide bond of short model peptides in solution. Sugawara M; Tonan K; Ikawa S Spectrochim Acta A Mol Biomol Spectrosc; 2001 May; 57(6):1305-16. PubMed ID: 11419473 [TBL] [Abstract][Full Text] [Related]
24. Intramolecular assistance of cis/trans isomerization of the histidine-proline moiety. Reimer U; el Mokdad N; Schutkowski M; Fischer G Biochemistry; 1997 Nov; 36(45):13802-8. PubMed ID: 9374856 [TBL] [Abstract][Full Text] [Related]
26. A peptide model for proline isomerism in the unfolded state of staphylococcal nuclease. Raleigh DP; Evans PA; Pitkeathly M; Dobson CM J Mol Biol; 1992 Nov; 228(2):338-42. PubMed ID: 1453444 [TBL] [Abstract][Full Text] [Related]
27. Proline isomerization in the C-terminal region of HSP27. Alderson TR; Benesch JLP; Baldwin AJ Cell Stress Chaperones; 2017 Jul; 22(4):639-651. PubMed ID: 28547731 [TBL] [Abstract][Full Text] [Related]
28. The rate enhancement for prolyl cis-to-trans isomerization of cyclic CPFC peptide is caused by an increase in the vibrational entropy of the transition state. Lee JY; Kang YK J Phys Chem B; 2008 Mar; 112(11):3287-9. PubMed ID: 18302366 [TBL] [Abstract][Full Text] [Related]
29. Conformational preferences and cis-trans isomerization of L-3,4-dehydroproline residue. Kang YK; Park HS Biopolymers; 2009; 92(5):387-98. PubMed ID: 19373924 [TBL] [Abstract][Full Text] [Related]
30. Two conformational states of Turkey ovomucoid third domain at low pH: three-dimensional structures, internal dynamics, and interconversion kinetics and thermodynamics. Song J; Laskowski M; Qasim MA; Markley JL Biochemistry; 2003 Jun; 42(21):6380-91. PubMed ID: 12767219 [TBL] [Abstract][Full Text] [Related]
31. Cell adhesion promoting peptide GVKGDKGNPGWPGAP from the collagen type IV triple helix: cis/trans proline-induced multiple 1H NMR conformations and evidence for a KG/PG multiple turn repeat motif in the all-trans proline state. Mayo KH; Parra-Diaz D; McCarthy JB; Chelberg M Biochemistry; 1991 Aug; 30(33):8251-67. PubMed ID: 1868097 [TBL] [Abstract][Full Text] [Related]
32. Unexpectedly fast cis/trans isomerization of Xaa-Pro peptide bonds in disulfide-constrained cyclic peptides. Shi T; Spain SM; Rabenstein DL J Am Chem Soc; 2004 Jan; 126(3):790-6. PubMed ID: 14733553 [TBL] [Abstract][Full Text] [Related]
33. Cis-trans isomerization and puckering of proline residue. Kang YK; Choi HY Biophys Chem; 2004 Oct; 111(2):135-42. PubMed ID: 15381311 [TBL] [Abstract][Full Text] [Related]
34. Design of cyclic peptides featuring proline predominantly in the cis conformation under physiological conditions. Malešević M; Schumann M; Jahreis G; Fischer G; Lücke C Chembiochem; 2012 Sep; 13(14):2122-7. PubMed ID: 22969011 [TBL] [Abstract][Full Text] [Related]
35. Conformational preference and cis-trans isomerization of 4(R)-substituted proline residues. Song IK; Kang YK J Phys Chem B; 2006 Feb; 110(4):1915-27. PubMed ID: 16471763 [TBL] [Abstract][Full Text] [Related]
36. Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins. Guan RJ; Xiang Y; He XL; Wang CG; Wang M; Zhang Y; Sundberg EJ; Wang DC J Mol Biol; 2004 Aug; 341(5):1189-204. PubMed ID: 15321715 [TBL] [Abstract][Full Text] [Related]
37. Conformational preferences of proline oligopeptides. Kang YK; Jhon JS; Park HS J Phys Chem B; 2006 Sep; 110(35):17645-55. PubMed ID: 16942110 [TBL] [Abstract][Full Text] [Related]
38. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Schutkowski M; Bernhardt A; Zhou XZ; Shen M; Reimer U; Rahfeld JU; Lu KP; Fischer G Biochemistry; 1998 Apr; 37(16):5566-75. PubMed ID: 9548941 [TBL] [Abstract][Full Text] [Related]
39. Conformational preferences of proline analogues with different ring size. Jhon JS; Kang YK J Phys Chem B; 2007 Apr; 111(13):3496-507. PubMed ID: 17388495 [TBL] [Abstract][Full Text] [Related]
40. Collagen stability: insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. DeRider ML; Wilkens SJ; Waddell MJ; Bretscher LE; Weinhold F; Raines RT; Markley JL J Am Chem Soc; 2002 Mar; 124(11):2497-505. PubMed ID: 11890798 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]