BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36550224)

  • 1. Experimental study of an asymmetric valveless pump to elucidate insights into strategies for pediatric extravascular flow augmentation.
    Anatol J; García-Díaz M; Barrios-Collado C; Moneo-Fernández JA; Horvath M; Parra T; Castro-Ruiz F; Roche ET; Sierra-Pallares J
    Sci Rep; 2022 Dec; 12(1):22165. PubMed ID: 36550224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model of valveless pumping: a lumped model with time-dependent compliance, resistance, and inertia.
    Jung E
    Bull Math Biol; 2007 Oct; 69(7):2181-98. PubMed ID: 17457651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biohybrid valveless pump-bot powered by engineered skeletal muscle.
    Li Z; Seo Y; Aydin O; Elhebeary M; Kamm RD; Kong H; Saif MTA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1543-1548. PubMed ID: 30635415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimensionless analysis of valveless pumping in a thick-wall elastic tube: Application to the tubular embryonic heart.
    Kozlovsky P; Rosenfeld M; Jaffa AJ; Elad D
    J Biomech; 2015 Jun; 48(9):1652-61. PubMed ID: 25835790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Output of a valveless Liebau pump with biologically relevant vessel properties and compression frequencies.
    Davtyan R; Sarvazyan NA
    Sci Rep; 2021 Jun; 11(1):11505. PubMed ID: 34075100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Liebau phenomenon: a translational approach to new paradigms of CSF circulation and related flow disturbances.
    Longatti P
    Childs Nerv Syst; 2018 Feb; 34(2):227-233. PubMed ID: 29124390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building Valveless Impedance Pumps From Biological Components: Progress and Challenges.
    Sarvazyan N
    Front Physiol; 2021; 12():770906. PubMed ID: 35173623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes.
    Hiermeier F; Männer J
    J Cardiovasc Dev Dis; 2017 Nov; 4(4):. PubMed ID: 29367548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube.
    Männer J; Wessel A; Yelbuz TM
    Dev Dyn; 2010 Apr; 239(4):1035-46. PubMed ID: 20235196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric Elastomer Actuator-Based Valveless Impedance-Driven Pumping for Meso- and Macroscale Applications.
    Benouhiba A; Walter A; Jahren SE; Martinez T; Clavica F; Obrist D; Civet Y; Perriard Y
    Soft Robot; 2024 Apr; 11(2):198-206. PubMed ID: 37729065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of a viscoelastic valveless pump: a simple theory with experimental validation.
    Babbs CF
    Biomed Eng Online; 2010 Aug; 9():42. PubMed ID: 20807440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro investigation of a potential wave pumping effect in human aorta.
    Pahlevan NM; Gharib M
    J Biomech; 2013 Sep; 46(13):2122-9. PubMed ID: 23915578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An original valveless artificial heart providing pulsatile flow tested in mock circulatory loops.
    Tozzi P; Maertens A; Emery J; Joseph S; Kirsch M; Avellan F
    Int J Artif Organs; 2017 Nov; 40(12):683-689. PubMed ID: 28862717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valveless pumping behavior of the simulated embryonic heart tube as a function of contractile patterns and myocardial stiffness.
    Sharifi A; Gendernalik A; Garrity D; Bark D
    Biomech Model Mechanobiol; 2021 Oct; 20(5):2001-2012. PubMed ID: 34297252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Analysis of a Cardioid Flow Tube Valveless Piezoelectric Pump for Medical Applications.
    Wang J; Zhang F; Gui Z; Wen Y; Zeng Y; Xie T; Tan T; Chen B; Zhang J
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracorporeal membrane oxygenation versus counterpulsatile, pulsatile, and continuous left ventricular unloading for pediatric mechanical circulatory support.
    Bartoli CR; Koenig SC; Ionan C; Gillars KJ; Mitchell ME; Austin EH; Gray LA; Pantalos GM
    Pediatr Crit Care Med; 2013 Nov; 14(9):e424-37. PubMed ID: 24108116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow assessment as a function of pump timing of tubular pulsatile pump for use as a ventricular assist device in a left heart simulator.
    Sharifi A; Bark D
    Artif Organs; 2022 Jul; 46(7):1294-1304. PubMed ID: 35132629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impedance Pumping and Resonance in a Multi-Vessel System.
    Zislin V; Rosenfeld M
    Bioengineering (Basel); 2018 Aug; 5(3):. PubMed ID: 30096933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro performance analysis of a novel pulsatile diagonal pump in a simulated pediatric mechanical circulatory support system.
    Wang S; Kunselman AR; Ündar A
    Artif Organs; 2014 Jan; 38(1):64-72. PubMed ID: 24237183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parametric analysis of the output performance of a valveless piezoelectric pump with a bullhorn-shaped structure.
    He L; Hu D; Wang J; Zhang Z; Zhou Z; Yu G; Cheng G
    Rev Sci Instrum; 2021 Jul; 92(7):075005. PubMed ID: 34340423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.