BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36550260)

  • 41. Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length.
    Hansson O; Castilho RF; Korhonen L; Lindholm D; Bates GP; Brundin P
    J Neurochem; 2001 Aug; 78(4):694-703. PubMed ID: 11520890
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gene Therapy for Huntington's Disease Using Targeted Endonucleases.
    Dabrowska M; Olejniczak M
    Methods Mol Biol; 2020; 2056():269-284. PubMed ID: 31586354
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington's disease.
    Cummings DM; Alaghband Y; Hickey MA; Joshi PR; Hong SC; Zhu C; Ando TK; André VM; Cepeda C; Watson JB; Levine MS
    J Neurophysiol; 2012 Jan; 107(2):677-91. PubMed ID: 22072510
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Similar Progression of Morphological and Metabolic Phenotype in R6/2 Mice with Different CAG Repeats Revealed by In Vivo Magnetic Resonance Imaging and Spectroscopy.
    Sawiak SJ; Wood NI; Morton AJ
    J Huntingtons Dis; 2016 Oct; 5(3):271-283. PubMed ID: 27662335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Altered Aconitase 2 Activity in Huntington's Disease Peripheral Blood Cells and Mouse Model Striatum.
    Chen CM; Wu YR; Chang KH
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29160844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of genetic modifiers of Huntington's disease somatic CAG repeat instability by in vivo CRISPR-Cas9 genome editing.
    Mouro Pinto R; Murtha R; Azevedo A; Douglas C; Kovalenko M; Ulloa J; Crescenti S; Burch Z; Oliver E; Vitalo A; Mota-Silva E; Riggs MJ; Correia K; Elezi E; Demelo B; Carroll JB; Gillis T; Gusella JF; MacDonald ME; Wheeler VC
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895438
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma.
    Chiang MC; Chen CM; Lee MR; Chen HW; Chen HM; Wu YS; Hung CH; Kang JJ; Chang CP; Chang C; Wu YR; Tsai YS; Chern Y
    Hum Mol Genet; 2010 Oct; 19(20):4043-58. PubMed ID: 20668093
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9.
    Shin JW; Kim KH; Chao MJ; Atwal RS; Gillis T; MacDonald ME; Gusella JF; Lee JM
    Hum Mol Genet; 2016 Oct; 25(20):4566-4576. PubMed ID: 28172889
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington's disease.
    Bobrowska A; Paganetti P; Matthias P; Bates GP
    PLoS One; 2011; 6(6):e20696. PubMed ID: 21677773
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of Phosphodiesterases in Huntington's Disease.
    Fusco FR; Paldino E
    Adv Neurobiol; 2017; 17():285-304. PubMed ID: 28956337
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formation of polyglutamine inclusions in a wide range of non-CNS tissues in the HdhQ150 knock-in mouse model of Huntington's disease.
    Moffitt H; McPhail GD; Woodman B; Hobbs C; Bates GP
    PLoS One; 2009 Nov; 4(11):e8025. PubMed ID: 19956633
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activation of NPY-Y2 receptors ameliorates disease pathology in the R6/2 mouse and PC12 cell models of Huntington's disease.
    Fatoba O; Kloster E; Reick C; Saft C; Gold R; Epplen JT; Arning L; Ellrichmann G
    Exp Neurol; 2018 Apr; 302():112-128. PubMed ID: 29309751
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Imbalance of p75(NTR)/TrkB protein expression in Huntington's disease: implication for neuroprotective therapies.
    Brito V; Puigdellívol M; Giralt A; del Toro D; Alberch J; Ginés S
    Cell Death Dis; 2013 Apr; 4(4):e595. PubMed ID: 23598407
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relationship between BDNF expression in major striatal afferents, striatum morphology and motor behavior in the R6/2 mouse model of Huntington's disease.
    Samadi P; Boutet A; Rymar VV; Rawal K; Maheux J; Kvann JC; Tomaszewski M; Beaubien F; Cloutier JF; Levesque D; Sadikot AF
    Genes Brain Behav; 2013 Feb; 12(1):108-24. PubMed ID: 23006318
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gene expression profiling of R6/2 transgenic mice with different CAG repeat lengths reveals genes associated with disease onset and progression in Huntington's disease.
    Tang B; Seredenina T; Coppola G; Kuhn A; Geschwind DH; Luthi-Carter R; Thomas EA
    Neurobiol Dis; 2011 Jun; 42(3):459-67. PubMed ID: 21334439
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington's disease mice.
    Zajac MS; Pang TY; Wong N; Weinrich B; Leang LS; Craig JM; Saffery R; Hannan AJ
    Hippocampus; 2010 May; 20(5):621-36. PubMed ID: 19499586
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Decreased BDNF Release in Cortical Neurons of a Knock-in Mouse Model of Huntington's Disease.
    Yu C; Li CH; Chen S; Yoo H; Qin X; Park H
    Sci Rep; 2018 Nov; 8(1):16976. PubMed ID: 30451892
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DNA double-strand break-free CRISPR interference delays Huntington's disease progression in mice.
    Seo JH; Shin JH; Lee J; Kim D; Hwang HY; Nam BG; Lee J; Kim HH; Cho SR
    Commun Biol; 2023 Apr; 6(1):466. PubMed ID: 37117485
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hypothalamic expression of huntingtin causes distinct metabolic changes in Huntington's disease mice.
    Dickson E; Soylu-Kucharz R; Petersén Å; Björkqvist M
    Mol Metab; 2022 Mar; 57():101439. PubMed ID: 35007790
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improvement of BDNF signalling by P42 peptide in Huntington's disease.
    Couly S; Paucard A; Bonneaud N; Maurice T; Benigno L; Jourdan C; Cohen-Solal C; Vignes M; Maschat F
    Hum Mol Genet; 2018 Sep; 27(17):3012-3028. PubMed ID: 29860423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.