These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 36550302)
1. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics. Xu C; Huang J; Jiang Y; He S; Zhang C; Pu K Nat Biomed Eng; 2023 Mar; 7(3):298-312. PubMed ID: 36550302 [TBL] [Abstract][Full Text] [Related]
2. An Organic Afterglow Protheranostic Nanoassembly. He S; Xie C; Jiang Y; Pu K Adv Mater; 2019 Aug; 31(32):e1902672. PubMed ID: 31206855 [TBL] [Abstract][Full Text] [Related]
3. Activatable Sonoafterglow Nanoprobes for T-Cell Imaging. Xu C; He S; Wei X; Huang J; Xu M; Pu K Adv Mater; 2023 Jul; 35(30):e2211651. PubMed ID: 37074842 [TBL] [Abstract][Full Text] [Related]
4. Lanthanide Inorganic Nanoparticles Enhance Semiconducting Polymer Nanoparticles Afterglow Luminescence for In Vivo Afterglow/Magnetic Resonance Imaging. Wei HL; Zhang Q; Deng Z; Guan G; Dong Z; Cao H; Liang P; Lu D; Liu S; Yin X; Song G; Huan S; Zhang XB Anal Chem; 2024 May; 96(19):7697-7705. PubMed ID: 38697043 [TBL] [Abstract][Full Text] [Related]
5. A Highly Bright Near-Infrared Afterglow Luminophore for Activatable Ultrasensitive In Vivo Imaging. Yang L; Zhao M; Chen W; Zhu J; Xu W; Li Q; Pu K; Miao Q Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202313117. PubMed ID: 38018329 [TBL] [Abstract][Full Text] [Related]
6. Organic Afterglow Nanoparticles in Bioapplications. Shen H; Liao S; Li Z; Wang Y; Huan S; Zhang XB; Song G Chemistry; 2023 Jul; 29(42):e202301209. PubMed ID: 37222343 [TBL] [Abstract][Full Text] [Related]
7. Persistent luminescence nanoparticles for cancer theranostics application. Liu N; Chen X; Sun X; Sun X; Shi J J Nanobiotechnology; 2021 Apr; 19(1):113. PubMed ID: 33879169 [TBL] [Abstract][Full Text] [Related]
8. Large Hollow Cavity Luminous Nanoparticles with Near-Infrared Persistent Luminescence and Tunable Sizes for Tumor Afterglow Imaging and Chemo-/Photodynamic Therapies. Wang J; Li J; Yu J; Zhang H; Zhang B ACS Nano; 2018 May; 12(5):4246-4258. PubMed ID: 29676899 [TBL] [Abstract][Full Text] [Related]
9. Near-Infrared Afterglow Luminescence of Chlorin Nanoparticles for Ultrasensitive Chen W; Zhang Y; Li Q; Jiang Y; Zhou H; Liu Y; Miao Q; Gao M J Am Chem Soc; 2022 Apr; 144(15):6719-6726. PubMed ID: 35380810 [TBL] [Abstract][Full Text] [Related]
10. Dual-Locked Probe with Activatable Sonoafterglow Luminescence for Precise Imaging of MET-Induced Liver Injury. Yao Z; Xu F; Wu R; Wang X; Guo M; Wang S; Yang K; Du W; Song J Anal Chem; 2024 Sep; 96(37):15031-15041. PubMed ID: 39226180 [TBL] [Abstract][Full Text] [Related]
11. Molecular radio afterglow probes for cancer radiodynamic theranostics. Huang J; Su L; Xu C; Ge X; Zhang R; Song J; Pu K Nat Mater; 2023 Nov; 22(11):1421-1429. PubMed ID: 37667071 [TBL] [Abstract][Full Text] [Related]
12. Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging. Jiang Y; Zhao M; Miao J; Chen W; Zhang Y; Miao M; Yang L; Li Q; Miao Q Nat Commun; 2024 Mar; 15(1):2124. PubMed ID: 38459025 [TBL] [Abstract][Full Text] [Related]
13. Preparation of AIEgen-based near-infrared afterglow luminescence nanoprobes for tumor imaging and image-guided tumor resection. Chen C; Zhang X; Gao Z; Feng G; Ding D Nat Protoc; 2024 Aug; 19(8):2408-2434. PubMed ID: 38637702 [TBL] [Abstract][Full Text] [Related]
14. Organic Nanoparticles with Persistent Luminescence for In Vivo Afterglow Imaging-Guided Photodynamic Therapy. Zheng X; Wu W; Zheng Y; Ding Y; Xiang Y; Liu B; Tong A Chemistry; 2021 Apr; 27(23):6911-6916. PubMed ID: 33556210 [TBL] [Abstract][Full Text] [Related]
15. Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery. Ni X; Zhang X; Duan X; Zheng HL; Xue XS; Ding D Nano Lett; 2019 Jan; 19(1):318-330. PubMed ID: 30556699 [TBL] [Abstract][Full Text] [Related]
16. Dye Sensitization Offers a Brighter Afterglow Nanoparticle Future for in vivo Recharged Luminescent Imaging. Zhou J; Huang K; Lin S; Zhang N; Wang X; Li Y; Li Z; Han G Chemistry; 2022 May; 28(26):e202104366. PubMed ID: 35218098 [TBL] [Abstract][Full Text] [Related]
17. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Miao Q; Xie C; Zhen X; Lyu Y; Duan H; Liu X; Jokerst JV; Pu K Nat Biotechnol; 2017 Nov; 35(11):1102-1110. PubMed ID: 29035373 [TBL] [Abstract][Full Text] [Related]
18. Self-Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Near-Infrared Afterglow Imaging of Metastatic Tumors. Xie C; Zhen X; Miao Q; Lyu Y; Pu K Adv Mater; 2018 May; 30(21):e1801331. PubMed ID: 29611257 [TBL] [Abstract][Full Text] [Related]
19. Cyclic Amplification of the Afterglow Luminescent Nanoreporter Enables the Prediction of Anti-cancer Efficiency. Wang Y; Song G; Liao S; Qin Q; Zhao Y; Shi L; Guan K; Gong X; Wang P; Yin X; Chen Q; Zhang XB Angew Chem Int Ed Engl; 2021 Sep; 60(36):19779-19789. PubMed ID: 34233057 [TBL] [Abstract][Full Text] [Related]
20. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics. Sun SK; Wang HF; Yan XP Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]