These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36550327)

  • 21. Natural Language Processing and Machine Learning to Enable Clinical Decision Support for Treatment of Pediatric Pneumonia.
    Smith JC; Spann A; McCoy AB; Johnson JA; Arnold DH; Williams DJ; Weitkamp AO
    AMIA Annu Symp Proc; 2020; 2020():1130-1139. PubMed ID: 33936489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning.
    Osborne JD; Wyatt M; Westfall AO; Willig J; Bethard S; Gordon G
    J Am Med Inform Assoc; 2016 Nov; 23(6):1077-1084. PubMed ID: 27026618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SNOMED-encoded surgical pathology databases: a tool for epidemiologic investigation.
    Berman JJ; Moore GW
    Mod Pathol; 1996 Sep; 9(9):944-50. PubMed ID: 8878028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Object-oriented controlled-vocabulary translator using TRANSOFT + HyperPAD.
    Moore GW; Berman JJ
    Proc Annu Symp Comput Appl Med Care; 1991; ():973-5. PubMed ID: 1807773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Launching into clinical space with medspaCy: a new clinical text processing toolkit in Python.
    Eyre H; Chapman AB; Peterson KS; Shi J; Alba PR; Jones MM; Box TL; DuVall SL; Patterson OV
    AMIA Annu Symp Proc; 2021; 2021():438-447. PubMed ID: 35308962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automating tissue bank annotation from pathology reports - comparison to a gold standard expert annotation set.
    Liu K; Mitchell KJ; Chapman WW; Crowley RS
    AMIA Annu Symp Proc; 2005; 2005():460-4. PubMed ID: 16779082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural language processing with machine learning to predict outcomes after ovarian cancer surgery.
    Barber EL; Garg R; Persenaire C; Simon M
    Gynecol Oncol; 2021 Jan; 160(1):182-186. PubMed ID: 33069375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing.
    Garg R; Oh E; Naidech A; Kording K; Prabhakaran S
    J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Practice-Based Learning and Improvement: Improving Morbidity and Mortality Review Using Natural Language Processing.
    Kobritz M; Patel V; Rindskopf D; Demyan L; Jarrett M; Coppa G; Antonacci AC
    J Surg Res; 2023 Mar; 283():351-356. PubMed ID: 36427445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying neurocognitive disorder using vector representation of free conversation.
    Horigome T; Hino K; Toyoshiba H; Shindo N; Funaki K; Eguchi Y; Kitazawa M; Fujita T; Mimura M; Kishimoto T
    Sci Rep; 2022 Aug; 12(1):12461. PubMed ID: 35922457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural Language Processing and Machine Learning for Identifying Incident Stroke From Electronic Health Records: Algorithm Development and Validation.
    Zhao Y; Fu S; Bielinski SJ; Decker PA; Chamberlain AM; Roger VL; Liu H; Larson NB
    J Med Internet Res; 2021 Mar; 23(3):e22951. PubMed ID: 33683212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving Methods of Identifying Anaphylaxis for Medical Product Safety Surveillance Using Natural Language Processing and Machine Learning.
    Carrell DS; Gruber S; Floyd JS; Bann MA; Cushing-Haugen KL; Johnson RL; Graham V; Cronkite DJ; Hazlehurst BL; Felcher AH; Bejan CA; Kennedy A; Shinde MU; Karami S; Ma Y; Stojanovic D; Zhao Y; Ball R; Nelson JC
    Am J Epidemiol; 2023 Feb; 192(2):283-295. PubMed ID: 36331289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural Language Processing and Machine Learning Methods to Characterize Unstructured Patient-Reported Outcomes: Validation Study.
    Lu Z; Sim JA; Wang JX; Forrest CB; Krull KR; Srivastava D; Hudson MM; Robison LL; Baker JN; Huang IC
    J Med Internet Res; 2021 Nov; 23(11):e26777. PubMed ID: 34730546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine Vision Methods, Natural Language Processing, and Machine Learning Algorithms for Automated Dispersion Plot Analysis and Chemical Identification from Complex Mixtures.
    Yeap D; Hichwa PT; Rajapakse MY; Peirano DJ; McCartney MM; Kenyon NJ; Davis CE
    Anal Chem; 2019 Aug; 91(16):10509-10517. PubMed ID: 31310101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural language processing for cognitive therapy: Extracting schemas from thought records.
    Burger F; Neerincx MA; Brinkman WP
    PLoS One; 2021; 16(10):e0257832. PubMed ID: 34662350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Natural Language Processing and Machine Learning Approach to Identification of Incidental Radiology Findings in Trauma Patients Discharged from the Emergency Department.
    Evans CS; Dorris HD; Kane MT; Mervak B; Brice JH; Gray B; Moore C
    Ann Emerg Med; 2023 Mar; 81(3):262-269. PubMed ID: 36328850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ASO Author Reflections: Natural Language Processing Aids in the Detection of Incidental Pancreatic Lesions in Cross-Sectional Imaging.
    Kooragayala K; Lou J; Hong YK
    Ann Surg Oncol; 2022 Dec; 29(13):8520-8521. PubMed ID: 35969301
    [No Abstract]   [Full Text] [Related]  

  • 38. Can Staff Distinguish Falls: Experimental Hypothesis Verification Using Japanese Incident Reports and Natural Language Processing.
    Yokota S; Shinohara E; Ohe K
    Stud Health Technol Inform; 2018; 250():159-163. PubMed ID: 29857420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of deep learning natural language processing algorithm for keyword extraction from pathology reports in electronic health records.
    Kim Y; Lee JH; Choi S; Lee JM; Kim JH; Seok J; Joo HJ
    Sci Rep; 2020 Nov; 10(1):20265. PubMed ID: 33219276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A clinical text classification paradigm using weak supervision and deep representation.
    Wang Y; Sohn S; Liu S; Shen F; Wang L; Atkinson EJ; Amin S; Liu H
    BMC Med Inform Decis Mak; 2019 Jan; 19(1):1. PubMed ID: 30616584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.