BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36550790)

  • 41. Ultralight Biomass Aerogels with Multifunctionality and Superelasticity Under Extreme Conditions.
    Li SL; Wang J; Zhao HB; Cheng JB; Zhang AN; Wang T; Cao M; Fu T; Wang YZ
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):59231-59242. PubMed ID: 34852193
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomimetic Hybridization of Kevlar into Silk Fibroin: Nanofibrous Strategy for Improved Mechanic Properties of Flexible Composites and Filtration Membranes.
    Lv L; Han X; Zong L; Li M; You J; Wu X; Li C
    ACS Nano; 2017 Aug; 11(8):8178-8184. PubMed ID: 28723068
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual-Crystallizable Silk Fibroin/Poly(L-lactic Acid) Biocomposite Films: Effect of Polymer Phases on Protein Structures in Protein-Polymer Blends.
    Wang F; Li Y; Gough CR; Liu Q; Hu X
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33668676
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nonmulberry silk fibroin-based biomaterials: Impact on cell behavior regulation and tissue regeneration.
    Zou S; Yao X; Shao H; Reis RL; Kundu SC; Zhang Y
    Acta Biomater; 2022 Nov; 153():68-84. PubMed ID: 36113722
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Petrochemical-Free Route to Superelastic Hierarchical Cellulose Aerogel.
    Qin B; Yu ZL; Huang J; Meng YF; Chen R; Chen Z; Yu SH
    Angew Chem Int Ed Engl; 2023 Jan; 62(5):e202214809. PubMed ID: 36445797
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery.
    He J; Zhao H; Li X; Su D; Zhang F; Ji H; Liu R
    J Hazard Mater; 2018 Mar; 346():199-207. PubMed ID: 29275109
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-temperature superelastic, anisotropic, silane-crosslinked sodium alginate aerogel for thermal insulation.
    Guan F; Feng S; Sun J; Yang Q; Zhang Y; Li Z; Tao J; Ji X; Wang Y; Bao D; Guo J; Zhang S
    Int J Biol Macromol; 2024 Mar; 262(Pt 1):129800. PubMed ID: 38296125
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stabilization of black rice anthocyanins by self-assembled silk fibroin nanofibrils: Morphology, spectroscopy and thermal protection.
    Ma Z; Jing P
    Int J Biol Macromol; 2020 Mar; 146():1030-1039. PubMed ID: 31730951
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.
    Kapoor S; Kundu SC
    Acta Biomater; 2016 Feb; 31():17-32. PubMed ID: 26602821
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Silk fibroin/cholinium gallate-based architectures as therapeutic tools.
    Gomes JM; Silva SS; Fernandes EM; Lobo FCM; Martín-Pastor M; Taboada P; Reis RL
    Acta Biomater; 2022 Jul; 147():168-184. PubMed ID: 35580828
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dissolution behavior of silk fibroin in a low concentration CaCl
    Shen T; Wang T; Cheng G; Huang L; Chen L; Wu D
    Int J Biol Macromol; 2018 Jul; 113():458-463. PubMed ID: 29421494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: Biomechanical patterns.
    Johari N; Khodaei A; Samadikuchaksaraei A; Reis RL; Kundu SC; Moroni L
    Acta Biomater; 2022 Nov; 153():38-67. PubMed ID: 36126911
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material.
    Srisawasdi T; Petcharoen K; Sirivat A; Jamieson AM
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():1-8. PubMed ID: 26249559
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultralight, highly flexible in situ thermally crosslinked polyimide aerogels with superior mechanical and thermal protection properties via nanofiber reinforcement.
    Pan Y; Zheng J; Xu Y; Chen X; Yan M; Li J; Zhao X; Feng Y; Ma Y; Ding M; Wang R; He J
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):829-839. PubMed ID: 35963170
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering of sustainable biomaterial composites from cellulose and silk fibroin: Fundamentals and applications.
    Kostag M; Jedvert K; El Seoud OA
    Int J Biol Macromol; 2021 Jan; 167():687-718. PubMed ID: 33249159
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploring the versatility of biodegradable biomass aerogels: In-depth evaluation of Firmiana simplex bark microfibers depolymerized by deep eutectic solvent.
    Farooq A; Yang H; Ding Z; Bu F; Guo M; Sun W; Wang Z; Tian M
    Int J Biol Macromol; 2024 Jul; ():133629. PubMed ID: 38964682
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions.
    Si Y; Fu Q; Wang X; Zhu J; Yu J; Sun G; Ding B
    ACS Nano; 2015 Apr; 9(4):3791-9. PubMed ID: 25853279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Factors controlling the deposition of silk fibroin nanofibrils during layer-by-layer assembly.
    de Moraes MA; Crouzier T; Rubner M; Beppu MM
    Biomacromolecules; 2015 Jan; 16(1):97-104. PubMed ID: 25469860
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distinctive Stress-Stiffening Responses of Regenerated Silk Fibroin Protein Polymers under Nanoscale Gap Geometries: Effect of Shear on Silk Fibroin-Based Materials.
    Zhang Y; Zuo Y; Wen S; Hu Y; Min Y
    Biomacromolecules; 2018 Apr; 19(4):1223-1233. PubMed ID: 29481061
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of a High-Toughness Polyurethane/Fibroin Composite without Interfacial Treatment and Its Toughening Mechanism.
    Zhang C; Xia L; Deng B; Li C; Wang Y; Li R; Dai F; Liu X; Xu W
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25409-25418. PubMed ID: 32378401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.