BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36551056)

  • 1. Information-Based Similarity of Ordinal Pattern Sequences as a Novel Descriptor in Obstructive Sleep Apnea Screening Based on Wearable Photoplethysmography Bracelets.
    Chen M; Wu S; Chen T; Wang C; Liu G
    Biosensors (Basel); 2022 Nov; 12(12):. PubMed ID: 36551056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep apnea screening based on Photoplethysmography data from wearable bracelets using an information-based similarity approach.
    Wu S; Chen M; Wei K; Liu G
    Comput Methods Programs Biomed; 2021 Nov; 211():106442. PubMed ID: 34624633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sliding Trend Fuzzy Approximate Entropy as a Novel Descriptor of Heart Rate Variability in Obstructive Sleep Apnea.
    Li Y; Pan W; Li K; Jiang Q; Liu G
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):175-183. PubMed ID: 29993964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a photoplethysmography device for detection of obstructive sleep apnea in the perioperative setting.
    Faßbender P; Haddad A; Bürgener S; Peters J
    J Clin Monit Comput; 2019 Apr; 33(2):341-345. PubMed ID: 29749570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The novel approach of temporal dependency complexity analysis of heart rate variability in obstructive sleep apnea.
    Tang L; Liu G
    Comput Biol Med; 2021 Aug; 135():104632. PubMed ID: 34265554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuzzy Approximate Entropy of Extrema Based on Multiple Moving Averages as a Novel Approach in Obstructive Sleep Apnea Screening.
    Weng P; Wei K; Chen T; Chen M; Liu G
    IEEE J Transl Eng Health Med; 2022; 10():4901211. PubMed ID: 36247084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the Variance Delay Fuzzy Approximate Entropy for Autonomic Nervous System Fluctuation Analysis in Obstructive Sleep Apnea Patients.
    Li Y; Wu S; Yang Q; Liu G; Ge L
    Entropy (Basel); 2020 Aug; 22(9):. PubMed ID: 33286684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: agreement of ear photoplethysmography with ECG measurements, in 343 subjects.
    Weinschenk SW; Beise RD; Lorenz J
    Eur J Appl Physiol; 2016 Aug; 116(8):1527-35. PubMed ID: 27278521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In obstructive sleep apnea patients, automatic determination of respiratory arrests by photoplethysmography signal and heart rate variability.
    Bozkurt MR; Uçar MK; Bozkurt F; Bilgin C
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):959-979. PubMed ID: 31515685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single channel photoplethysmography-based obstructive sleep apnea detection and arrhythmia classification.
    Chen X; Huang J; Luo F; Gao S; Xi M; Li J
    Technol Health Care; 2022; 30(2):399-411. PubMed ID: 34486994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heart Rate Variability from Wearable Photoplethysmography Systems: Implications in Sleep Studies at High Altitude.
    Castiglioni P; Meriggi P; Di Rienzo M; Lombardi C; Parati G; Faini A
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Single-Center Validation of the Accuracy of a Photoplethysmography-Based Smartwatch for Screening Obstructive Sleep Apnea.
    Chen Y; Wang W; Guo Y; Zhang H; Chen Y; Xie L
    Nat Sci Sleep; 2021; 13():1533-1544. PubMed ID: 34557047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of pulse rate variability with heart rate variability during obstructive sleep apnea.
    Khandoker AH; Karmakar CK; Palaniswami M
    Med Eng Phys; 2011 Mar; 33(2):204-9. PubMed ID: 20980188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale Bidirectional Temporal Convolutional Network for Sleep Apnea Detection Based on Wearable Photoplethysmography Bracelet.
    Zou L; Liu G
    IEEE J Biomed Health Inform; 2024 Mar; 28(3):1331-1340. PubMed ID: 37991905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central Sleep Apnea Detection by Means of Finger Photoplethysmography.
    Massie F; Vits S; Khachatryan A; Van Pee B; Verbraecken J; Bergmann J
    IEEE J Transl Eng Health Med; 2023; 11():126-136. PubMed ID: 36704242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Photoplethysmogram Signal Quality on Pulse Arrival Time during Polysomnography.
    Rinkevičius M; Charlton PH; Bailón R; Marozas V
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative detection of sleep apnea with wearable watch device.
    Hayano J; Yamamoto H; Nonaka I; Komazawa M; Itao K; Ueda N; Tanaka H; Yuda E
    PLoS One; 2020; 15(11):e0237279. PubMed ID: 33166293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of obstructive sleep apnea-related sleep fragmentation utilizing deep learning-based sleep staging from photoplethysmography.
    Huttunen R; Leppänen T; Duce B; Oksenberg A; Myllymaa S; Töyräs J; Korkalainen H
    Sleep; 2021 Oct; 44(10):. PubMed ID: 34089616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the accuracy of inter-beat intervals acquired from consumer-grade photoplethysmography wristbands using an electrocardiogram-aided information-based similarity approach.
    Cui X; Wang J; Xue S; Qin Z; Peng CK
    Physiol Meas; 2024 Mar; 45(3):. PubMed ID: 38387061
    [No Abstract]   [Full Text] [Related]  

  • 20. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor.
    Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.