These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 36551082)

  • 21. Raman Scattering-Based Biosensing: New Prospects and Opportunities.
    Serebrennikova KV; Berlina AN; Sotnikov DV; Zherdev AV; Dzantiev BB
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strategies for the Development of Metallic-Nanoparticle-Based Label-Free Biosensors and Their Biomedical Applications.
    Kaushal S; Nanda SS; Samal S; Yi DK
    Chembiochem; 2020 Mar; 21(5):576-600. PubMed ID: 31634410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmon-enhanced biosensors for microRNA analysis and cancer diagnosis.
    Lu X; Yao C; Sun L; Li Z
    Biosens Bioelectron; 2022 May; 203():114041. PubMed ID: 35121447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical sensing techniques for rapid detection of agrochemicals: Strategies, challenges, and perspectives.
    Li Z; Lin H; Wang L; Cao L; Sui J; Wang K
    Sci Total Environ; 2022 Sep; 838(Pt 3):156515. PubMed ID: 35667437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose sensing.
    Singer N; Pillai RG; Johnson AID; Harris KD; Jemere AB
    Mikrochim Acta; 2020 Mar; 187(4):196. PubMed ID: 32125544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Advances in Engineered Noble Metal Nanomaterials as a Surface-Enhanced Raman Scattering Active Platform for Cancer Diagnostics.
    Chen Y; Yu F; Wang Y; Liu W; Ye J; Xiao J; Liu X; Jiang H; Wang X
    J Biomed Nanotechnol; 2022 Jan; 18(1):1-23. PubMed ID: 35180897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic nano-protrusions: hierarchical nanostructures for single-molecule Raman spectroscopy.
    Basuray S; Pathak A; Bok S; Chen B; Hamm SC; Mathai CJ; Guha S; Gangopadhyay K; Gangopadhyay S
    Nanotechnology; 2017 Jan; 28(2):025302. PubMed ID: 27905323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new generation of sensors based on extraordinary optical transmission.
    Gordon R; Sinton D; Kavanagh KL; Brolo AG
    Acc Chem Res; 2008 Aug; 41(8):1049-57. PubMed ID: 18605739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanohole array plasmonic biosensors: Emerging point-of-care applications.
    Prasad A; Choi J; Jia Z; Park S; Gartia MR
    Biosens Bioelectron; 2019 Apr; 130():185-203. PubMed ID: 30738247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in plasmon-enhanced luminescence for biosensing and bioimaging.
    Gao S; Zhou R; Samanta S; Qu J; Ohulchanskyy TY
    Anal Chim Acta; 2023 May; 1254():341086. PubMed ID: 37005018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonically Engineered Nanoprobes for Biomedical Applications.
    Kumar A; Kim S; Nam JM
    J Am Chem Soc; 2016 Nov; 138(44):14509-14525. PubMed ID: 27723324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent progress in fabrication of anisotropic nanostructures for surface-enhanced Raman spectroscopy.
    Qiu T; Zhang W; Chu PK
    Recent Pat Nanotechnol; 2009; 3(1):10-20. PubMed ID: 19149751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface-Enhanced Raman Probes Based on Gold Nanomaterials for in vivo Diagnosis and Imaging.
    Wen C; Wang L; Liu L; Shen XC; Chen H
    Chem Asian J; 2022 Apr; 17(7):e202200014. PubMed ID: 35178878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response of MG63 osteoblast-like cells to ordered nanotopographies fabricated using colloidal self-assembly and glancing angle deposition.
    Wang PY; Bennetsen DT; Foss M; Thissen H; Kingshott P
    Biointerphases; 2015 Dec; 10(4):04A306. PubMed ID: 26459103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review.
    Luo SC; Sivashanmugan K; Liao JD; Yao CK; Peng HC
    Biosens Bioelectron; 2014 Nov; 61():232-40. PubMed ID: 24892785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection.
    Lee J; Takemura K; Park EY
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29027923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 'Switch-off' biosensing for chymotrypsin-catalyzed reaction by SPR-SERS spectroscopy.
    Fu C; Xu W; Chen G; Xu S
    Analyst; 2013 Nov; 138(21):6282-6. PubMed ID: 24045432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging nanosensing technologies for the detection of β-agonists.
    Li G; Zhang X; Zheng F; Liu J; Wu D
    Food Chem; 2020 Dec; 332():127431. PubMed ID: 32645668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Progress in Plasmonic Biosensing Schemes for Virus Detection.
    Mauriz E
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Composite-Scattering Plasmonic Nanoprobes for Label-Free, Quantitative Biomolecular Sensing.
    Zhang C; Paria D; Semancik S; Barman I
    Small; 2019 Sep; 15(38):e1901165. PubMed ID: 31394029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.