BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36551146)

  • 21. Molecularly imprinted polymer film interfaced with Surface Acoustic Wave technology as a sensing platform for label-free protein detection.
    Tretjakov A; Syritski V; Reut J; Boroznjak R; Öpik A
    Anal Chim Acta; 2016 Jan; 902():182-188. PubMed ID: 26703269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Flexible, Acoustic Localized Sensor with Mass Block-Beam Structure Based on Polydimethylsiloxane-Silver Nanowires.
    Zhang Q; Ji C; Lv L; Zhao D; Ji J; Zhuo K; Yuan Z; Zhang W; Sang S
    Soft Robot; 2021 Jun; 8(3):352-363. PubMed ID: 32668191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic tweezer with complex boundary-free trapping and transport channel controlled by shadow waveguides.
    Li J; Shen C; Huang TJ; Cummer SA
    Sci Adv; 2021 Aug; 7(34):. PubMed ID: 34407929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples.
    Papadakis G; Murasova P; Hamiot A; Tsougeni K; Kaprou G; Eck M; Rabus D; Bilkova Z; Dupuy B; Jobst G; Tserepi A; Gogolides E; Gizeli E
    Biosens Bioelectron; 2018 Jul; 111():52-58. PubMed ID: 29635118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acoustic manipulation of particles in a cylindrical cavity: Theoretical and experimental study on the effects of boundary conditions.
    Xu D; Cai F; Chen M; Li F; Wang C; Meng L; Xu D; Wang W; Wu J; Zheng H
    Ultrasonics; 2019 Mar; 93():18-25. PubMed ID: 30384006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional heating and patterning dynamics of particles in microscale acoustic tweezers.
    Weser R; Deng Z; Kondalkar VV; Darinskii AN; Cierpka C; Schmidt H; König J
    Lab Chip; 2022 Jul; 22(15):2886-2901. PubMed ID: 35851398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Human Microrobot Interface Based on Acoustic Manipulation.
    Lu X; Zhao K; Liu W; Yang D; Shen H; Peng H; Guo X; Li J; Wang J
    ACS Nano; 2019 Oct; 13(10):11443-11452. PubMed ID: 31425653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics.
    Papadakis G; Friedt JM; Eck M; Rabus D; Jobst G; Gizeli E
    Biomed Microdevices; 2017 Sep; 19(3):16. PubMed ID: 28357652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A versatile polydopamine platform for facile preparation of protein stationary phase for chip-based open tubular capillary electrochromatography enantioseparation.
    Liu CM; Liang RP; Wang XN; Wang JW; Qiu JD
    J Chromatogr A; 2013 Jun; 1294():145-51. PubMed ID: 23643186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thin film Gallium nitride (GaN) based acoustofluidic Tweezer: Modelling and microparticle manipulation.
    Sun C; Wu F; Fu Y; Wallis DJ; Mikhaylov R; Yuan F; Liang D; Xie Z; Wang H; Tao R; Shen MH; Yang J; Xun W; Wu Z; Yang Z; Cang H; Yang X
    Ultrasonics; 2020 Dec; 108():106202. PubMed ID: 32535411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Versatile acoustic manipulation of micro-objects using mode-switchable oscillating bubbles: transportation, trapping, rotation, and revolution.
    Zhang W; Song B; Bai X; Jia L; Song L; Guo J; Feng L
    Lab Chip; 2021 Dec; 21(24):4760-4771. PubMed ID: 34632476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal considerations for microswimmer trap-and-release using standing surface acoustic waves.
    Cui M; Kim M; Weisensee PB; Meacham JM
    Lab Chip; 2021 Jun; 21(13):2534-2543. PubMed ID: 33998632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid prototyping and parametric optimization of plastic acoustofluidic devices for blood-bacteria separation.
    Silva R; Dow P; Dubay R; Lissandrello C; Holder J; Densmore D; Fiering J
    Biomed Microdevices; 2017 Sep; 19(3):70. PubMed ID: 28779375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radiation forces exerted on arbitrarily located sphere by acoustic tweezer.
    Lee J; Shung KK
    J Acoust Soc Am; 2006 Aug; 120(2):1084-94. PubMed ID: 16938994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing single-beam multitrapping acoustical tweezers.
    Silva GT; Baggio AL
    Ultrasonics; 2015 Feb; 56():449-55. PubMed ID: 25304994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging on-chip surface acoustic wave technology for small biomaterials manipulation and characterization.
    Gao Y; Fajrial AK; Yang T; Ding X
    Biomater Sci; 2021 Mar; 9(5):1574-1582. PubMed ID: 33283794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal Underwater Acoustic Warfare Strategy Based on a Three-Layer GA-BP Neural Network.
    Wang Z; Wu J; Wang H; Wang H; Hao Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
    Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME
    Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes.
    Nath P; Fung D; Kunde YA; Zeytun A; Branch B; Goddard G
    Lab Chip; 2010 Sep; 10(17):2286-91. PubMed ID: 20593077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.