These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36551168)

  • 21. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting reliable regions in protein alignments from sequence profiles.
    Tress ML; Jones D; Valencia A
    J Mol Biol; 2003 Jul; 330(4):705-18. PubMed ID: 12850141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size and structure of the sequence space of repeat proteins.
    Marchi J; Galpern EA; Espada R; Ferreiro DU; Walczak AM; Mora T
    PLoS Comput Biol; 2019 Aug; 15(8):e1007282. PubMed ID: 31415557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational Protein Design with Deep Learning Neural Networks.
    Wang J; Cao H; Zhang JZH; Qi Y
    Sci Rep; 2018 Apr; 8(1):6349. PubMed ID: 29679026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PFASUM: a substitution matrix from Pfam structural alignments.
    Keul F; Hess M; Goesele M; Hamacher K
    BMC Bioinformatics; 2017 Jun; 18(1):293. PubMed ID: 28583067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ConSurf-HSSP database: the mapping of evolutionary conservation among homologs onto PDB structures.
    Glaser F; Rosenberg Y; Kessel A; Pupko T; Ben-Tal N
    Proteins; 2005 Feb; 58(3):610-7. PubMed ID: 15614759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Entropy calculator: getting the best from your multiple protein alignments.
    Ramazzotti M; Degl'Innocenti D; Manao G; Ramponi G
    Ital J Biochem; 2004 Mar; 53(1):16-22. PubMed ID: 15356957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.
    Fang C; Shang Y; Xu D
    Proteins; 2018 May; 86(5):592-598. PubMed ID: 29492997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Web-Based Protocol for Interprotein Contact Prediction by Deep Learning.
    Jing X; Zeng H; Wang S; Xu J
    Methods Mol Biol; 2020; 2074():67-80. PubMed ID: 31583631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Grouping of amino acid types and extraction of amino acid properties from multiple sequence alignments using variance maximization.
    Wrabl JO; Grishin NV
    Proteins; 2005 Nov; 61(3):523-34. PubMed ID: 16184599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ComplexContact: a web server for inter-protein contact prediction using deep learning.
    Zeng H; Wang S; Zhou T; Zhao F; Li X; Wu Q; Xu J
    Nucleic Acids Res; 2018 Jul; 46(W1):W432-W437. PubMed ID: 29790960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ETLD: an encoder-transformation layer-decoder architecture for protein contact and mutation effects prediction.
    Wang H; Zang Y; Kang Y; Zhang J; Zhang L; Zhang S
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37598423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimates of statistical significance for comparison of individual positions in multiple sequence alignments.
    Sadreyev RI; Grishin NV
    BMC Bioinformatics; 2004 Aug; 5():106. PubMed ID: 15296518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probabilistic description of protein alignments for sequences and structures.
    Koike R; Kinoshita K; Kidera A
    Proteins; 2004 Jul; 56(1):157-66. PubMed ID: 15162495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Semi-supervised prediction of protein interaction sites from unlabeled sample information.
    Wang Y; Mei C; Zhou Y; Wang Y; Zheng C; Zhen X; Xiong Y; Chen P; Zhang J; Wang B
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):699. PubMed ID: 31874616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlated mutations via regularized multinomial regression.
    Sreekumar J; ter Braak CJ; van Ham RC; van Dijk AD
    BMC Bioinformatics; 2011 Nov; 12():444. PubMed ID: 22082126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.
    VĂ¡rnai C; Burkoff NS; Wild DL
    PLoS One; 2017; 12(2):e0169356. PubMed ID: 28166227
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction.
    Dunn SD; Wahl LM; Gloor GB
    Bioinformatics; 2008 Feb; 24(3):333-40. PubMed ID: 18057019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. De novo profile generation based on sequence context specificity with the long short-term memory network.
    Yamada KD; Kinoshita K
    BMC Bioinformatics; 2018 Jul; 19(1):272. PubMed ID: 30021530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlated mutation analyses on very large sequence families.
    Oliveira L; Paiva AC; Vriend G
    Chembiochem; 2002 Oct; 3(10):1010-7. PubMed ID: 12362367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.