BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36551228)

  • 1. Metabolic Profiling of Chestnut Shell (
    Nam M; Yu JM; Park YR; Kim YS; Kim JH; Kim MS
    Biomolecules; 2022 Dec; 12(12):. PubMed ID: 36551228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chestnut shells (Italian cultivar "Marrone di Roccadaspide" PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MS
    Cerulli A; Napolitano A; Masullo M; Hošek J; Pizza C; Piacente S
    Food Res Int; 2020 Mar; 129():108787. PubMed ID: 32036927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytochemical Profiles and Cellular Antioxidant Activities in Chestnut (
    Chang X; Liu F; Lin Z; Qiu J; Peng C; Lu Y; Guo X
    Molecules; 2020 Jan; 25(1):. PubMed ID: 31906347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Untargeted Characterization of Chestnut (
    Cacciola NA; Cerrato A; Capriotti AL; Cavaliere C; D'Apolito M; Montone CM; Piovesana S; Squillaci G; Peluso G; Laganà A
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32545546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents.
    Vella FM; Laratta B; La Cara F; Morana A
    Nat Prod Res; 2018 May; 32(9):1022-1032. PubMed ID: 28920445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS.
    Comandini P; Lerma-García MJ; Simó-Alfonso EF; Toschi TG
    Food Chem; 2014 Aug; 157():290-5. PubMed ID: 24679783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effects of scoparone from chestnut inner shell on platelet-derived growth factor-BB-induced vascular smooth muscle cell migration and vascular neointima hyperplasia.
    Jung SH; Lee GB; Ryu Y; Cui L; Lee HM; Kim J; Kim B; Won KJ
    J Sci Food Agric; 2019 Jul; 99(9):4397-4406. PubMed ID: 30861122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Joint Approach of Morphological and UHPLC-HRMS Analyses to Throw Light on the Autochthonous 'Verdole' Chestnut for Nutraceutical Innovation of Its Waste.
    Ferrara E; Pecoraro MT; Cice D; Piccolella S; Formato M; Esposito A; Petriccione M; Pacifico S
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Castanea sativa Mill. Flowers amongst the most powerful antioxidant matrices: a phytochemical approach in decoctions and infusions.
    Carocho M; Barros L; Bento A; Santos-Buelga C; Morales P; Ferreira IC
    Biomed Res Int; 2014; 2014():232956. PubMed ID: 24822186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of physicochemical factors related to the automatic pellicle removal in Korean chestnut (Castanea crenata).
    Hwang JY; Hwang IK; Park JB
    J Agric Food Chem; 2001 Dec; 49(12):6045-9. PubMed ID: 11743806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dermal Papilla Cell Proliferation of Phytochemicals Isolated from Chestnut Shells (
    Park S; Choi N; Trang LNH; Oh M; Oh Y; Sung JH; Kim SH
    Plants (Basel); 2023 Feb; 12(5):. PubMed ID: 36903879
    [No Abstract]   [Full Text] [Related]  

  • 12. Castanea sativa by-products: a review on added value and sustainable application.
    Braga N; Rodrigues F; Oliveira MB
    Nat Prod Res; 2015; 29(1):1-18. PubMed ID: 25204784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive phenolic components and potential health effects of chestnut shell: A review.
    Hu M; Yang X; Chang X
    J Food Biochem; 2021 Apr; 45(4):e13696. PubMed ID: 33751612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenolic Compositions and Antioxidant Properties in Bark, Flower, Inner Skin, Kernel and Leaf Extracts of Castanea crenata Sieb. et Zucc.
    Tuyen PT; Xuan TD; Khang DT; Ahmad A; Quan NV; Tu Anh TT; Anh H; Minh TN
    Antioxidants (Basel); 2017 May; 6(2):. PubMed ID: 28475126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and Quantification of the Major Phenolic Constituents in
    Medic A; Kunc P; Zamljen T; Hudina M; Veberic R; Solar A
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant activities of chestnut nut of Castanea sativa Mill. (cultivar 'Judia') as function of origin ecosystem.
    Dinis LT; Oliveira MM; Almeida J; Costa R; Gomes-Laranjo J; Peixoto F
    Food Chem; 2012 May; 132(1):1-8. PubMed ID: 26434256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolite Profiling of Chestnut (
    Yu JM; Nam M; Kim MS
    Foods; 2022 May; 11(9):. PubMed ID: 35564048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methodology optimization for the analysis of phenolic compounds in chestnut (
    Fuente-Maqueda F; Rodríguez A; Majada J; Fernández B; Feito I
    Food Sci Technol Int; 2020 Sep; 26(6):520-534. PubMed ID: 32223433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary and secondary metabolite composition of kernels from three cultivars of Portuguese chestnut (Castanea sativa Mill.) at different stages of industrial transformation.
    Do Carmo Barbosa Mendes De Vasconcelos M; Bennett RN; Rosa EA; Ferreira Cardoso JV
    J Agric Food Chem; 2007 May; 55(9):3508-16. PubMed ID: 17407304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant effects of the chestnut (Castanea crenata) inner shell extract in t-BHP-treated HepG2 cells, and CCl4- and high-fat diet-treated mice.
    Noh JR; Gang GT; Kim YH; Yang KJ; Hwang JH; Lee HS; Oh WK; Song KS; Lee CH
    Food Chem Toxicol; 2010 Nov; 48(11):3177-83. PubMed ID: 20732376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.