These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36551339)

  • 1. The Potential Antiviral Effects of Selenium Nanoparticles and Coated Surfaces.
    Kopel J; Fralick J; Reid TW
    Antibiotics (Basel); 2022 Nov; 11(12):. PubMed ID: 36551339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Copper-Binding Peptide That Self-Assembles Into a Transparent Antibacterial and Antiviral Coating.
    Boas D; Reches M
    Front Bioeng Biotechnol; 2021; 9():736679. PubMed ID: 34746103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short communication: inhibiting biofilm formation on paper towels through the use of selenium nanoparticles coatings.
    Wang Q; Webster TJ
    Int J Nanomedicine; 2013; 8():407-11. PubMed ID: 23378762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Antiviral Coatings for High-Touch Surfaces by Using Human Coronaviruses HCoV-229E and SARS-CoV-2.
    Butot S; Baert L; Zuber S
    Appl Environ Microbiol; 2021 Sep; 87(19):e0109821. PubMed ID: 34288707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red selenium nanoparticles and gray selenium nanorods as antibacterial coatings for PEEK medical devices.
    Wang Q; Mejía Jaramillo A; Pavon JJ; Webster TJ
    J Biomed Mater Res B Appl Biomater; 2016 Oct; 104(7):1352-8. PubMed ID: 26138597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiviral Peptides in Antimicrobial Surface Coatings-From Current Techniques to Potential Applications.
    Jabeen M; Biswas P; Islam MT; Paul R
    Viruses; 2023 Feb; 15(3):. PubMed ID: 36992349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal-derived selenium nanoparticles and their potential applications in electroless silver coatings for preventing pin-tract infections.
    Liang X; Zhang S; Gadd GM; McGrath J; Rooney DW; Zhao Q
    Regen Biomater; 2022; 9(1):rbac013. PubMed ID: 35449828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant
    Tran PA; O'Brien-Simpson N; Palmer JA; Bock N; Reynolds EC; Webster TJ; Deva A; Morrison WA; O'Connor AJ
    Int J Nanomedicine; 2019; 14():4613-4624. PubMed ID: 31308651
    [No Abstract]   [Full Text] [Related]  

  • 9. Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications.
    Alavi M; Kamarasu P; McClements DJ; Moore MD
    Adv Colloid Interface Sci; 2022 Aug; 306():102726. PubMed ID: 35785596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Different Surface Coating Agents for Selenium Nanoparticles: Enhanced Anti-Inflammatory Activity and Drug Loading Capacity.
    Mekkawy AI; Fathy M; Mohamed HB
    Drug Des Devel Ther; 2022; 16():1811-1825. PubMed ID: 35719212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity.
    Stevanović M; Filipović N; Djurdjević J; Lukić M; Milenković M; Boccaccini A
    Colloids Surf B Biointerfaces; 2015 Aug; 132():208-15. PubMed ID: 26047884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial activity of cuprous oxide-coated and cupric oxide-coated surfaces.
    Behzadinasab S; Hosseini M; Williams MD; Ivester HM; Allen IC; Falkinham JO; Ducker WA
    J Hosp Infect; 2022 Nov; 129():58-64. PubMed ID: 35940287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Packaging Covered with Antiviral and Antibacterial Coatings Based on ZnO Nanoparticles Supplemented with Geraniol and Carvacrol.
    Mizielińska M; Nawrotek P; Stachurska X; Ordon M; Bartkowiak A
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33572073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive antifouling and active self-disinfecting antiviral surfaces.
    Lishchynskyi O; Shymborska Y; Stetsyshyn Y; Raczkowska J; Skirtach AG; Peretiatko T; Budkowski A
    Chem Eng J; 2022 Oct; 446():137048. PubMed ID: 35601363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel coating containing molybdenum oxide nanoparticles to reduce Staphylococcus aureus contamination on inanimate surfaces.
    Piçarra S; Lopes E; Almeida PL; de Lencastre H; Aires-de-Sousa M
    PLoS One; 2019; 14(3):e0213151. PubMed ID: 30883551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiviral activity of salt-coated materials against SARS-CoV-2.
    Coleman CM; Wang B; Wang Y; Tapia-Brito E; Chen Z; Riffat J; Riffat S; Tarlinton R; Ghaemmaghami A
    Access Microbiol; 2023; 5(9):. PubMed ID: 37841099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19.
    Lin N; Verma D; Saini N; Arbi R; Munir M; Jovic M; Turak A
    Nano Today; 2021 Oct; 40():101267. PubMed ID: 34404999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices.
    Wang Q; Webster TJ
    J Biomed Mater Res A; 2012 Dec; 100(12):3205-10. PubMed ID: 22707390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin: A Sustainable Antiviral Coating Material.
    Boarino A; Wang H; Olgiati F; Artusio F; Özkan M; Bertella S; Razza N; Cagno V; Luterbacher JS; Klok HA; Stellacci F
    ACS Sustain Chem Eng; 2022 Oct; 10(42):14001-14010. PubMed ID: 36312454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of combating transmission of COVID-19 using novel self-cleaning superhydrophobic surfaces: part I-protection strategies against fomites.
    Meguid SA; Elzaabalawy A
    Int J Mech Mater Des; 2020; 16(3):423-431. PubMed ID: 38624551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.