These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 36551365)
1. ABP-Finder: A Tool to Identify Antibacterial Peptides and the Gram-Staining Type of Targeted Bacteria. Ruiz-Blanco YB; Agüero-Chapin G; Romero-Molina S; Antunes A; Olari LR; Spellerberg B; Münch J; Sanchez-Garcia E Antibiotics (Basel); 2022 Nov; 11(12):. PubMed ID: 36551365 [TBL] [Abstract][Full Text] [Related]
2. Bobde SS; Alsaab FM; Wang G; Van Hoek ML Front Microbiol; 2021; 12():715246. PubMed ID: 34867843 [TBL] [Abstract][Full Text] [Related]
3. Deep-ABPpred: identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec. Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33784381 [TBL] [Abstract][Full Text] [Related]
4. Development of a Novel Antibacterial Peptide, PAM-5, via Combination of Phage Display Selection and Computer-Assisted Modification. Yuen HL; Chan SY; Ding YE; Lim S; Tan GC; Kho CL Biomolecules; 2023 Mar; 13(3):. PubMed ID: 36979401 [TBL] [Abstract][Full Text] [Related]
5. An Efficient Evaluation System Accelerates α-Helical Antimicrobial Peptide Discovery and Its Application to Global Human Genome Mining. Liu L; Wang C; Zhang M; Zhang Z; Wu Y; Zhang Y Front Microbiol; 2022; 13():870361. PubMed ID: 35547131 [TBL] [Abstract][Full Text] [Related]
6. AMPActiPred: A three-stage framework for predicting antibacterial peptides and activity levels with deep forest. Yao L; Guan J; Xie P; Chung CR; Deng J; Huang Y; Chiang YC; Lee TY Protein Sci; 2024 Jun; 33(6):e5006. PubMed ID: 38723168 [TBL] [Abstract][Full Text] [Related]
7. Network Science and Group Fusion Similarity-Based Searching to Explore the Chemical Space of Antiparasitic Peptides. Ayala-Ruano S; Marrero-Ponce Y; Aguilera-Mendoza L; Pérez N; Agüero-Chapin G; Antunes A; Aguilar AC ACS Omega; 2022 Dec; 7(50):46012-46036. PubMed ID: 36570318 [TBL] [Abstract][Full Text] [Related]
8. Characterization and identification of antimicrobial peptides with different functional activities. Chung CR; Kuo TR; Wu LC; Lee TY; Horng JT Brief Bioinform; 2019 Jun; ():. PubMed ID: 31155657 [TBL] [Abstract][Full Text] [Related]
9. LcCCL28-25, Derived from Piscine Chemokine, Exhibits Antimicrobial Activity against Gram-Negative and Gram-Positive Bacteria Su J; Li H; Hu J; Wang D; Zhang F; Fu Z; Han F Microbiol Spectr; 2022 Jun; 10(3):e0251521. PubMed ID: 35616397 [TBL] [Abstract][Full Text] [Related]
10. Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning. Yan J; Cai J; Zhang B; Wang Y; Wong DF; Siu SWI Antibiotics (Basel); 2022 Oct; 11(10):. PubMed ID: 36290108 [TBL] [Abstract][Full Text] [Related]
11. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types. Xiao X; Shao YT; Cheng X; Stamatovic B Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856 [TBL] [Abstract][Full Text] [Related]
12. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance? Zharkova MS; Orlov DS; Golubeva OY; Chakchir OB; Eliseev IE; Grinchuk TM; Shamova OV Front Cell Infect Microbiol; 2019; 9():128. PubMed ID: 31114762 [TBL] [Abstract][Full Text] [Related]
14. CalcAMP: A New Machine Learning Model for the Accurate Prediction of Antimicrobial Activity of Peptides. Bournez C; Riool M; de Boer L; Cordfunke RA; de Best L; van Leeuwen R; Drijfhout JW; Zaat SAJ; van Westen GJP Antibiotics (Basel); 2023 Apr; 12(4):. PubMed ID: 37107088 [TBL] [Abstract][Full Text] [Related]
15. Tools in the Era of Multidrug Resistance in Bacteria: Applications for New Antimicrobial Peptides Discovery. Moretta A; Scieuzo C; Salvia R; Popović ŽD; Sgambato A; Falabella P Curr Pharm Des; 2022; 28(35):2856-2866. PubMed ID: 35980058 [TBL] [Abstract][Full Text] [Related]
16. Stepwise identification of potent antimicrobial peptides from human genome. Yan L; Yan Y; Liu H; Lv Q Biosystems; 2013 Jul; 113(1):1-8. PubMed ID: 23597653 [TBL] [Abstract][Full Text] [Related]
17. How to Combat Gram-Negative Bacteria Using Antimicrobial Peptides: A Challenge or an Unattainable Goal? Barreto-Santamaría A; Arévalo-Pinzón G; Patarroyo MA; Patarroyo ME Antibiotics (Basel); 2021 Dec; 10(12):. PubMed ID: 34943713 [TBL] [Abstract][Full Text] [Related]
18. Highly selective performance of rationally designed antimicrobial peptides based on ponericin-W1. Lv S; Wang J; You R; Liu S; Ding Y; Hadianamrei R; Tomeh MA; Pan F; Cai Z; Zhao X Biomater Sci; 2022 Aug; 10(17):4848-4865. PubMed ID: 35861280 [TBL] [Abstract][Full Text] [Related]
19. Alignment-based design and synthesis of new antimicrobial Aurein-derived peptides with improved activity against Gram-negative bacteria and evaluation of their toxicity on human cells. Madanchi H; Akbari S; Shabani AA; Sardari S; Farmahini Farahani Y; Ghavami G; Ebrahimi Kiasari R Drug Dev Res; 2019 Feb; 80(1):162-170. PubMed ID: 30593676 [TBL] [Abstract][Full Text] [Related]