BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 36551630)

  • 21. Targeting immune checkpoints in anti-neutrophil cytoplasmic antibodies associated vasculitis: the potential therapeutic targets in the future.
    Pan M; Zhao H; Jin R; Leung PSC; Shuai Z
    Front Immunol; 2023; 14():1156212. PubMed ID: 37090741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promising immunotherapy targets: TIM3, LAG3, and TIGIT joined the party.
    Lu C; Tan Y
    Mol Ther Oncol; 2024 Mar; 32(1):200773. PubMed ID: 38596295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The implication of anti-PD-1 therapy in cancer patients for the vaccination against viral and other infectious diseases.
    Retnakumar SV; Chauvin C; Bayry J
    Pharmacol Ther; 2023 May; 245():108399. PubMed ID: 37001736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Newly Emerging Immune Checkpoints: Promises for Future Cancer Therapy.
    Torphy RJ; Schulick RD; Zhu Y
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29211042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immune checkpoint inhibitors and cellular treatment for lymphoma immunotherapy.
    Li F; Chen Y; Pang M; Yang P; Jing H
    Clin Exp Immunol; 2021 Jul; 205(1):1-11. PubMed ID: 33675535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Progress of lymphocyte activation gene 3 and programmed cell death protein 1 antibodies for cancer treatment: A review.
    Li YQ; Chen XM; Si GF; Yuan XM
    Biomol Biomed; 2024 Apr; ():. PubMed ID: 38581716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting TIGIT for Immunotherapy of Cancer: Update on Clinical Development.
    Rotte A; Sahasranaman S; Budha N
    Biomedicines; 2021 Sep; 9(9):. PubMed ID: 34572463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Traditional Treatment Approaches and Role of Immunotherapy in Lung Malignancy and Mesothelioma.
    Tamanna MT; Egbune C
    Cancer Treat Res; 2023; 185():79-89. PubMed ID: 37306905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach.
    Kgatle MM; Boshomane TMG; Lawal IO; Mokoala KMG; Mokgoro NP; Lourens N; Kairemo K; Zeevaart JR; Vorster M; Sathekge MM
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting novel inhibitory receptors in cancer immunotherapy.
    Ding QQ; Chauvin JM; Zarour HM
    Semin Immunol; 2020 Jun; 49():101436. PubMed ID: 33288379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Epigenetic Modifications in Inhibitory Immune Checkpoints in Cancer Development and Progression.
    Saleh R; Toor SM; Sasidharan Nair V; Elkord E
    Front Immunol; 2020; 11():1469. PubMed ID: 32760400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emerging immunotherapy targets in lung cancer.
    Zhu HH; Feng Y; Hu XS
    Chin Med J (Engl); 2020 Oct; 133(20):2456-2465. PubMed ID: 32947361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New Clinical Approaches and Emerging Evidence on Immune-Checkpoint Inhibitors as Anti-Cancer Therapeutics: CTLA-4 and PD-1 Pathways and Beyond.
    Christodoulou MI; Zaravinos A
    Crit Rev Immunol; 2019; 39(5):379-408. PubMed ID: 32422018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Features of Checkpoint Receptor-Ligand Interaction in Cancer and the Therapeutic Effectiveness of Their Inhibition.
    Kuzevanova A; Apanovich N; Mansorunov D; Korotaeva A; Karpukhin A
    Biomedicines; 2022 Aug; 10(9):. PubMed ID: 36140182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC).
    Chae YK; Arya A; Iams W; Cruz MR; Chandra S; Choi J; Giles F
    J Immunother Cancer; 2018 May; 6(1):39. PubMed ID: 29769148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tumor immune checkpoints and their associated inhibitors.
    Gao Z; Ling X; Shi C; Wang Y; Lin A
    J Zhejiang Univ Sci B; 2022 Oct; 23(10):823-843. PubMed ID: 36226537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: From bench to clinic and vice versa (Review).
    Scutti JAB
    Int J Oncol; 2018 Apr; 52(4):1041-1056. PubMed ID: 29484440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma.
    Mei Z; Huang J; Qiao B; Lam AK
    Int J Oral Sci; 2020 May; 12(1):16. PubMed ID: 32461587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epigenetic strategies synergize with PD-L1/PD-1 targeted cancer immunotherapies to enhance antitumor responses.
    Chen X; Pan X; Zhang W; Guo H; Cheng S; He Q; Yang B; Ding L
    Acta Pharm Sin B; 2020 May; 10(5):723-733. PubMed ID: 32528824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunotherapy Based on Immune Checkpoint Molecules and Immune Checkpoint Inhibitors in Gastric Cancer-Narrative Review.
    Poniewierska-Baran A; Sobolak K; Niedźwiedzka-Rystwej P; Plewa P; Pawlik A
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.