BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 36551978)

  • 1. Three-Dimensional Digital Light-Processing Bioprinting Using Silk Fibroin-Based Bio-Ink: Recent Advancements in Biomedical Applications.
    Sultan MT; Lee OJ; Lee JS; Park CH
    Biomedicines; 2022 Dec; 10(12):. PubMed ID: 36551978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting.
    Kim SH; Kim DY; Lim TH; Park CH
    Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing.
    Kim SH; Yeon YK; Lee JM; Chao JR; Lee YJ; Seo YB; Sultan MT; Lee OJ; Lee JS; Yoon SI; Hong IS; Khang G; Lee SJ; Yoo JJ; Park CH
    Nat Commun; 2018 Apr; 9(1):1620. PubMed ID: 29693652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital Light Processing Based Bioprinting with Composable Gradients.
    Wang M; Li W; Mille LS; Ching T; Luo Z; Tang G; Garciamendez CE; Lesha A; Hashimoto M; Zhang YS
    Adv Mater; 2022 Jan; 34(1):e2107038. PubMed ID: 34609032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin.
    Rajput M; Mondal P; Yadav P; Chatterjee K
    Int J Biol Macromol; 2022 Mar; 202():644-656. PubMed ID: 35066028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing.
    Lee YJ; Lee JS; Ajiteru O; Lee OJ; Lee JS; Lee H; Kim SW; Park JW; Kim KY; Choi KY; Hong H; Sultan T; Kim SH; Park CH
    Int J Biol Macromol; 2022 Jul; 213():317-327. PubMed ID: 35605719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering.
    Hong H; Seo YB; Kim DY; Lee JS; Lee YJ; Lee H; Ajiteru O; Sultan MT; Lee OJ; Kim SH; Park CH
    Biomaterials; 2020 Feb; 232():119679. PubMed ID: 31865191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volumetric additive manufacturing of pristine silk-based (bio)inks.
    Xie M; Lian L; Mu X; Luo Z; Garciamendez-Mijares CE; Zhang Z; López A; Manríquez J; Kuang X; Wu J; Sahoo JK; González FZ; Li G; Tang G; Maharjan S; Guo J; Kaplan DL; Zhang YS
    Nat Commun; 2023 Jan; 14(1):210. PubMed ID: 36639727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Developments in Bio-Ink Formulations Using Marine-Derived Biomaterials for Three-Dimensional (3D) Bioprinting.
    Khiari Z
    Mar Drugs; 2024 Mar; 22(3):. PubMed ID: 38535475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Step FRESH Bioprinting of Low-Viscosity Silk Fibroin Inks.
    Sakai S; Morita T
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2589-2597. PubMed ID: 35608818
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Zhang X; Wu W; Huang Y; Yang X; Gou M
    Int J Bioprint; 2023; 9(5):760. PubMed ID: 37457931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review.
    Fatimi A; Okoro OV; Podstawczyk D; Siminska-Stanny J; Shavandi A
    Gels; 2022 Mar; 8(3):. PubMed ID: 35323292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Bioprinting Technologies for Tissue Engineering Applications.
    Gu BK; Choi DJ; Park SJ; Kim YJ; Kim CH
    Adv Exp Med Biol; 2018; 1078():15-28. PubMed ID: 30357616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering.
    Lin L; Jiang S; Yang J; Qiu J; Jiao X; Yue X; Ke X; Yang G; Zhang L
    Int J Bioprint; 2023; 9(1):637. PubMed ID: 36844245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital light processing-based multi-material bioprinting: Processes, applications, and perspectives.
    Wu Y; Su H; Li M; Xing H
    J Biomed Mater Res A; 2023 Apr; 111(4):527-542. PubMed ID: 36436142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Formulating and Processing Biomaterial Inks for Vat Polymerization-Based 3D Printing.
    Li W; Mille LS; Robledo JA; Uribe T; Huerta V; Zhang YS
    Adv Healthc Mater; 2020 Aug; 9(15):e2000156. PubMed ID: 32529775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications
    Suntornnond R; Ng WL; Huang X; Yeow CHE; Yeong WY
    J Mater Chem B; 2022 Aug; 10(31):5989-6000. PubMed ID: 35876487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Printing to Build Fibrous Protein Architectures.
    Qiao H; Zheng K
    Methods Mol Biol; 2021; 2347():177-189. PubMed ID: 34472065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in volumetric bioprinting.
    Jing S; Lian L; Hou Y; Li Z; Zheng Z; Li G; Tang G; Xie G; Xie M
    Biofabrication; 2023 Nov; 16(1):. PubMed ID: 37922535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications.
    Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R
    Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.