These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36551996)

  • 1. Evaluation and Comparison of Multi-Omics Data Integration Methods for Subtyping of Cutaneous Melanoma.
    Amaro A; Pfeffer M; Pfeffer U; Reggiani F
    Biomedicines; 2022 Dec; 10(12):. PubMed ID: 36551996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma.
    Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y
    J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data Fusion Techniques for the Integration of Multi-Domain Genomic Data from Uveal Melanoma.
    Pfeffer M; Uschmajew A; Amaro A; Pfeffer U
    Cancers (Basel); 2019 Sep; 11(10):. PubMed ID: 31561508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis.
    Li X; Ma J; Leng L; Han M; Li M; He F; Zhu Y
    Front Genet; 2022; 13():806842. PubMed ID: 35186034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated analysis of multidimensional omics data on cutaneous melanoma prognosis.
    Jiang Y; Shi X; Zhao Q; Krauthammer M; Rothberg BE; Ma S
    Genomics; 2016 Jun; 107(6):223-30. PubMed ID: 27141884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping.
    Sathyanarayanan A; Gupta R; Thompson EW; Nyholt DR; Bauer DC; Nagaraj SH
    Brief Bioinform; 2020 Dec; 21(6):1920-1936. PubMed ID: 31774481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of immune subtypes based on immunogenomic profiling identifies prognostic signature for cutaneous melanoma.
    Hu B; Wei Q; Zhou C; Ju M; Wang L; Chen L; Li Z; Wei M; He M; Zhao L
    Int Immunopharmacol; 2020 Dec; 89(Pt A):107162. PubMed ID: 33168410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Omics Data Fusion for Cancer Molecular Subtyping Using Sparse Canonical Correlation Analysis.
    Qi L; Wang W; Wu T; Zhu L; He L; Wang X
    Front Genet; 2021; 12():607817. PubMed ID: 34367231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation and comparison of multi-omics data integration methods for cancer subtyping.
    Duan R; Gao L; Gao Y; Hu Y; Xu H; Huang M; Song K; Wang H; Dong Y; Jiang C; Zhang C; Jia S
    PLoS Comput Biol; 2021 Aug; 17(8):e1009224. PubMed ID: 34383739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating multi-platform genomic datasets for kidney renal clear cell carcinoma subtyping using stacked denoising autoencoders.
    Gu T; Zhao X
    Sci Rep; 2019 Nov; 9(1):16668. PubMed ID: 31723226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.
    Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y
    Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data.
    Franco EF; Rana P; Cruz A; Calderón VV; Azevedo V; Ramos RTJ; Ghosh P
    Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33921978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MVDA: a multi-view genomic data integration methodology.
    Serra A; Fratello M; Fortino V; Raiconi G; Tagliaferri R; Greco D
    BMC Bioinformatics; 2015 Aug; 16():261. PubMed ID: 26283178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction.
    Kim D; Joung JG; Sohn KA; Shin H; Park YR; Ritchie MD; Kim JH
    J Am Med Inform Assoc; 2015 Jan; 22(1):109-20. PubMed ID: 25002459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenomic and genomic analysis of transcriptome modulation in skin cutaneous melanoma.
    Chen W; Cheng P; Jiang J; Ren Y; Wu D; Xue D
    Aging (Albany NY); 2020 Jul; 12(13):12703-12725. PubMed ID: 32639949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of NLRP3 in the prognosis and immune infiltrates of skin cutaneous melanoma (SKCM).
    Wu S; Zang Q; Dai B
    Transl Cancer Res; 2021 Apr; 10(4):1692-1702. PubMed ID: 35116494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HCNM: Heterogeneous Correlation Network Model for Multi-level Integrative Study of Multi-omics Data for Cancer Subtype Prediction.
    Vangimalla RR; Sreevalsan-Nair J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1880-1886. PubMed ID: 34891654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.