These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 36552599)

  • 1. Unveiling the Vital Role of Long Non-Coding RNAs in Cardiac Oxidative Stress, Cell Death, and Fibrosis in Diabetic Cardiomyopathy.
    Tian Y; Gao Z; Liu W; Li J; Jiang X; Xin Y
    Antioxidants (Basel); 2022 Dec; 11(12):. PubMed ID: 36552599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy.
    Pant T; Dhanasekaran A; Fang J; Bai X; Bosnjak ZJ; Liang M; Ge ZD
    BMC Cardiovasc Disord; 2018 Oct; 18(1):197. PubMed ID: 30342478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long Non-coding RNA: A Key Regulator in the Pathogenesis of Diabetic Cardiomyopathy.
    Guo Y; Feng X; Wang D; Kang X; Zhang L; Ren H; Yuan G
    Front Cardiovasc Med; 2021; 8():655598. PubMed ID: 33889601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics.
    Jakubik D; Fitas A; Eyileten C; Jarosz-Popek J; Nowak A; Czajka P; Wicik Z; Sourij H; Siller-Matula JM; De Rosa S; Postula M
    Cardiovasc Diabetol; 2021 Feb; 20(1):55. PubMed ID: 33639953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Non-coding RNA in Diabetic Cardiomyopathy.
    Xia L; Song M
    Adv Exp Med Biol; 2020; 1229():181-195. PubMed ID: 32285412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA Sequencing of Cardiac in a Rat Model Uncovers Potential Target LncRNA of Diabetic Cardiomyopathy.
    Xi Y; Chen D; Dong Z; Lam H; He J; Du K; Chen C; Guo J; Xiao J
    Front Genet; 2022; 13():848364. PubMed ID: 35495145
    [No Abstract]   [Full Text] [Related]  

  • 7. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy.
    Yue Y; Meng K; Pu Y; Zhang X
    Diabetes Res Clin Pract; 2017 Nov; 133():124-130. PubMed ID: 28934669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-coding RNA involvement in the pathogenesis of diabetic cardiomyopathy.
    Zhang W; Xu W; Feng Y; Zhou X
    J Cell Mol Med; 2019 Sep; 23(9):5859-5867. PubMed ID: 31240820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long noncoding RNA Crnde attenuates cardiac fibrosis via Smad3-Crnde negative feedback in diabetic cardiomyopathy.
    Zheng D; Zhang Y; Hu Y; Guan J; Xu L; Xiao W; Zhong Q; Ren C; Lu J; Liang J; Hou J
    FEBS J; 2019 May; 286(9):1645-1655. PubMed ID: 30748104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs.
    Macvanin MT; Gluvic Z; Radovanovic J; Essack M; Gao X; Isenovic ER
    Front Endocrinol (Lausanne); 2023; 14():1124613. PubMed ID: 36950696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats.
    Yu W; Wu J; Cai F; Xiang J; Zha W; Fan D; Guo S; Ming Z; Liu C
    PLoS One; 2012; 7(12):e52013. PubMed ID: 23251674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and analysis of circulating long non-coding RNAs with high significance in diabetic cardiomyopathy.
    Pant T; Dhanasekaran A; Zhao M; Thorp EB; Forbess JM; Bosnjak ZJ; Benjamin IJ; Ge ZD
    Sci Rep; 2021 Jan; 11(1):2571. PubMed ID: 33510471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial Dysfunction and Diabetic Cardiomyopathy.
    Wang M; Li Y; Li S; Lv J
    Front Endocrinol (Lausanne); 2022; 13():851941. PubMed ID: 35464057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long noncoding RNAs: A new player in the prevention and treatment of diabetic cardiomyopathy?
    Ma C; Luo H; Liu B; Li F; Tschöpe C; Fa X
    Diabetes Metab Res Rev; 2018 Nov; 34(8):e3056. PubMed ID: 30160026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological Functions and Clinical Prospects of Extracellular Non-Coding RNAs in Diabetic Cardiomyopathy: an Updated Review.
    Yin Z; Chen C
    J Cardiovasc Transl Res; 2022 Jun; 15(3):469-476. PubMed ID: 35175553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone Deacetylases in the Pathogenesis of Diabetic Cardiomyopathy.
    Ke X; Lin Z; Ye Z; Leng M; Chen B; Jiang C; Jiang X; Li G
    Front Endocrinol (Lausanne); 2021; 12():679655. PubMed ID: 34367065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy.
    Peng ML; Fu Y; Wu CW; Zhang Y; Ren H; Zhou SS
    Front Endocrinol (Lausanne); 2022; 13():907757. PubMed ID: 35784531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LncRNAs: Proverbial Genomic "Junk" or Key Epigenetic Regulators During Cardiac Fibrosis in Diabetes?
    Biswas S; Thomas AA; Chakrabarti S
    Front Cardiovasc Med; 2018; 5():28. PubMed ID: 29670886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy.
    Xu Z; Sun J; Tong Q; Lin Q; Qian L; Park Y; Zheng Y
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27941647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNAs: A Critical Regulator and a Promising Therapeutic and Diagnostic Molecule for Diabetic Cardiomyopathy.
    Mathur P; Rani V
    Curr Gene Ther; 2021; 21(4):313-326. PubMed ID: 33719971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.