These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36552746)

  • 1. Impact of Liver Inflammation on Bile Acid Side Chain Shortening and Amidation.
    Alonso-Peña M; Espinosa-Escudero R; Hermanns HM; Briz O; Herranz JM; Garcia-Ruiz C; Fernandez-Checa JC; Juamperez J; Avila M; Argemi J; Bataller R; Crespo J; Monte MJ; Geier A; Herraez E; Marin JJG
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bile acid nuclear receptor FXR and digestive system diseases.
    Ding L; Yang L; Wang Z; Huang W
    Acta Pharm Sin B; 2015 Mar; 5(2):135-44. PubMed ID: 26579439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triglycerides and gallstone formation.
    Smelt AH
    Clin Chim Acta; 2010 Nov; 411(21-22):1625-31. PubMed ID: 20699090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactoferrin promotes bile acid metabolism and reduces hepatic cholesterol deposition by inhibiting the farnesoid X receptor (FXR)-mediated enterohepatic axis.
    Ling CJ; Xu JY; Li YH; Tong X; Yang HH; Yang J; Yuan LX; Qin LQ
    Food Funct; 2019 Nov; 10(11):7299-7307. PubMed ID: 31626262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression.
    Song KH; Li T; Owsley E; Strom S; Chiang JY
    Hepatology; 2009 Jan; 49(1):297-305. PubMed ID: 19085950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice.
    Fu ZD; Klaassen CD
    Toxicol Appl Pharmacol; 2013 Dec; 273(3):680-90. PubMed ID: 24183703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beneficial effect of ursodeoxycholic acid in patients with acyl-CoA oxidase 2 (ACOX2) deficiency-associated hypertransaminasemia.
    Alonso-Peña M; Espinosa-Escudero R; Herraez E; Briz O; Cagigal ML; Gonzalez-Santiago JM; Ortega-Alonso A; Fernandez-Rodriguez C; Bujanda L; Calvo Sanchez M; D Avola D; Londoño MC; Diago M; Fernandez-Checa JC; Garcia-Ruiz C; Andrade RJ; Lammert F; Prieto J; Crespo J; Juamperez J; Diaz-Gonzalez A; Monte MJ; Marin JJG
    Hepatology; 2022 Nov; 76(5):1259-1274. PubMed ID: 35395098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxy-terminal mutations of bile acid CoA:N-acyltransferase alter activity and substrate specificity.
    Styles NA; Shonsey EM; Falany JL; Guidry AL; Barnes S; Falany CN
    J Lipid Res; 2016 Jul; 57(7):1133-43. PubMed ID: 27230263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ACOX2 deficiency: An inborn error of bile acid synthesis identified in an adolescent with persistent hypertransaminasemia.
    Monte MJ; Alonso-Peña M; Briz O; Herraez E; Berasain C; Argemi J; Prieto J; Marin JJG
    J Hepatol; 2017 Mar; 66(3):581-588. PubMed ID: 27884763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice.
    Fu ZD; Cui JY; Klaassen CD
    J Lipid Res; 2014 Dec; 55(12):2576-86. PubMed ID: 25278499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel case of ACOX2 deficiency leads to recognition of a third human peroxisomal acyl-CoA oxidase.
    Ferdinandusse S; Denis S; van Roermund CWT; Preece MA; Koster J; Ebberink MS; Waterham HR; Wanders RJA
    Biochim Biophys Acta Mol Basis Dis; 2018 Mar; 1864(3):952-958. PubMed ID: 29287774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of activation of liver X receptor and peroxisome proliferator-activated receptor alpha on bile acid synthesis in rats].
    Ma Y; Jiang LL; Shi RL; Liu J
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2007 Jun; 29(3):384-7. PubMed ID: 17633467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol 7α-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis.
    Liu H; Pathak P; Boehme S; Chiang JL
    J Lipid Res; 2016 Oct; 57(10):1831-1844. PubMed ID: 27534992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bile acids contribute to the development of non-alcoholic steatohepatitis in mice.
    Gillard J; Clerbaux LA; Nachit M; Sempoux C; Staels B; Bindels LB; Tailleux A; Leclercq IA
    JHEP Rep; 2022 Jan; 4(1):100387. PubMed ID: 34825156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel role of transforming growth factor beta1 in transcriptional repression of human cholesterol 7alpha-hydroxylase gene.
    Li T; Chiang JY
    Gastroenterology; 2007 Nov; 133(5):1660-9. PubMed ID: 17920062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms for increased expression of cholesterol 7alpha-hydroxylase (Cyp7a1) in lactating rats.
    Wooton-Kee CR; Coy DJ; Athippozhy AT; Zhao T; Jones BR; Vore M
    Hepatology; 2010 Jan; 51(1):277-85. PubMed ID: 19957370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis.
    Bechmann LP; Kocabayoglu P; Sowa JP; Sydor S; Best J; Schlattjan M; Beilfuss A; Schmitt J; Hannivoort RA; Kilicarslan A; Rust C; Berr F; Tschopp O; Gerken G; Friedman SL; Geier A; Canbay A
    Hepatology; 2013 Apr; 57(4):1394-406. PubMed ID: 23299969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear receptor-mediated repression of human cholesterol 7alpha-hydroxylase gene transcription by bile acids.
    Chen W; Owsley E; Yang Y; Stroup D; Chiang JY
    J Lipid Res; 2001 Sep; 42(9):1402-12. PubMed ID: 11518759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chenodeoxycholic Acid Modulates Bile Acid Synthesis Independent of Fibroblast Growth Factor 19 in Primary Human Hepatocytes.
    Johansson H; Søndergaard JN; Jorns C; Kutter C; Ellis ECS
    Front Endocrinol (Lausanne); 2020; 11():554922. PubMed ID: 33692750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired Intestinal Farnesoid X Receptor Signaling in Cystic Fibrosis Mice.
    Ikpa PT; Doktorova M; Meijsen KF; Nieuwenhuijze NDA; Verkade HJ; Jonker JW; de Jonge HR; Bijvelds MJC
    Cell Mol Gastroenterol Hepatol; 2020; 9(1):47-60. PubMed ID: 31470114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.