BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 36552808)

  • 1. A Targeted Epigenetic Clock for the Prediction of Biological Age.
    Gensous N; Sala C; Pirazzini C; Ravaioli F; Milazzo M; Kwiatkowska KM; Marasco E; De Fanti S; Giuliani C; Pellegrini C; Santoro A; Capri M; Salvioli S; Monti D; Castellani G; Franceschi C; Bacalini MG; Garagnani P
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centenarians consistently present a younger epigenetic age than their chronological age with four epigenetic clocks based on a small number of CpG sites.
    Daunay A; Hardy LM; Bouyacoub Y; Sahbatou M; Touvier M; Blanché H; Deleuze JF; How-Kit A
    Aging (Albany NY); 2022 Oct; 14(19):7718-7733. PubMed ID: 36202132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influences of DNA methylation and epigenetic clocks, on metabolic disease, in middle-aged Koreans.
    Lee HS; Park T
    Clin Epigenetics; 2020 Oct; 12(1):148. PubMed ID: 33059731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysfunctional epigenetic aging of the normal colon and colorectal cancer risk.
    Wang T; Maden SK; Luebeck GE; Li CI; Newcomb PA; Ulrich CM; Joo JE; Buchanan DD; Milne RL; Southey MC; Carter KT; Willbanks AR; Luo Y; Yu M; Grady WM
    Clin Epigenetics; 2020 Jan; 12(1):5. PubMed ID: 31900199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building Minimized Epigenetic Clock by iPlex MassARRAY Platform.
    Davydova E; Perenkov A; Vedunova M
    Genes (Basel); 2024 Mar; 15(4):. PubMed ID: 38674360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1.
    Martin-Herranz DE; Aref-Eshghi E; Bonder MJ; Stubbs TM; Choufani S; Weksberg R; Stegle O; Sadikovic B; Reik W; Thornton JM
    Genome Biol; 2019 Aug; 20(1):146. PubMed ID: 31409373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The association of epigenetic clocks in brain tissue with brain pathologies and common aging phenotypes.
    Grodstein F; Lemos B; Yu L; Klein HU; Iatrou A; Buchman AS; Shireby GL; Mill J; Schneider JA; De Jager PL; Bennett DA
    Neurobiol Dis; 2021 Sep; 157():105428. PubMed ID: 34153464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decelerated Epigenetic Aging in Long Livers.
    Guvatova ZG; Kobelyatskaya AA; Pudova EA; Tarasova IV; Kudryavtseva AV; Tkacheva ON; Strazhesko ID; Moskalev AA
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-tissue DNA methylation age predictor in mouse.
    Stubbs TM; Bonder MJ; Stark AK; Krueger F; ; von Meyenn F; Stegle O; Reik W
    Genome Biol; 2017 Apr; 18(1):68. PubMed ID: 28399939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA methylation markers of age(ing) in non-model animals.
    Tangili M; Slettenhaar AJ; Sudyka J; Dugdale HL; Pen I; Palsbøll PJ; Verhulst S
    Mol Ecol; 2023 Sep; 32(17):4725-4741. PubMed ID: 37401200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA Methylation Clocks in Aging: Categories, Causes, and Consequences.
    Field AE; Robertson NA; Wang T; Havas A; Ideker T; Adams PD
    Mol Cell; 2018 Sep; 71(6):882-895. PubMed ID: 30241605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Many chronological aging clocks can be found throughout the epigenome: Implications for quantifying biological aging.
    Porter HL; Brown CA; Roopnarinesingh X; Giles CB; Georgescu C; Freeman WM; Wren JD
    Aging Cell; 2021 Nov; 20(11):e13492. PubMed ID: 34655509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic Clock: Just a Convenient Marker or an Active Driver of Aging?
    Ashapkin VV; Kutueva LI; Vanyushin BF
    Adv Exp Med Biol; 2019; 1178():175-206. PubMed ID: 31493228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians' offspring.
    Gentilini D; Mari D; Castaldi D; Remondini D; Ogliari G; Ostan R; Bucci L; Sirchia SM; Tabano S; Cavagnini F; Monti D; Franceschi C; Di Blasio AM; Vitale G
    Age (Dordr); 2013 Oct; 35(5):1961-73. PubMed ID: 22923132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA methylation and healthy human aging.
    Jones MJ; Goodman SJ; Kobor MS
    Aging Cell; 2015 Dec; 14(6):924-32. PubMed ID: 25913071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Statistical Framework to Identify Deviation from Time Linearity in Epigenetic Aging.
    Snir S; vonHoldt BM; Pellegrini M
    PLoS Comput Biol; 2016 Nov; 12(11):e1005183. PubMed ID: 27835646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new blood based epigenetic age predictor for adolescents and young adults.
    Aanes H; Bleka Ø; Dahlberg PS; Carm KT; Lehtimäki T; Raitakari O; Kähönen M; Hurme M; Rolseth V
    Sci Rep; 2023 Feb; 13(1):2303. PubMed ID: 36759656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood and skeletal muscle ageing determined by epigenetic clocks and their associations with physical activity and functioning.
    Sillanpää E; Heikkinen A; Kankaanpää A; Paavilainen A; Kujala UM; Tammelin TH; Kovanen V; Sipilä S; Pietiläinen KH; Kaprio J; Ollikainen M; Laakkonen EK
    Clin Epigenetics; 2021 May; 13(1):110. PubMed ID: 34001218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic clock: A promising biomarker and practical tool in aging.
    Duan R; Fu Q; Sun Y; Li Q
    Ageing Res Rev; 2022 Nov; 81():101743. PubMed ID: 36206857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging, exceptional longevity and comparisons of the Hannum and Horvath epigenetic clocks.
    Armstrong NJ; Mather KA; Thalamuthu A; Wright MJ; Trollor JN; Ames D; Brodaty H; Schofield PR; Sachdev PS; Kwok JB
    Epigenomics; 2017 May; 9(5):689-700. PubMed ID: 28470125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.