BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36553584)

  • 1. Three-Dimensional Organization of Chicken Genome Provides Insights into Genetic Adaptation to Extreme Environments.
    Shao D; Yang Y; Shi S; Tong H
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D organization of chicken genome demonstrates evolutionary conservation of topologically associated domains and highlights unique architecture of erythrocytes' chromatin.
    Fishman V; Battulin N; Nuriddinov M; Maslova A; Zlotina A; Strunov A; Chervyakova D; Korablev A; Serov O; Krasikova A
    Nucleic Acids Res; 2019 Jan; 47(2):648-665. PubMed ID: 30418618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole genome analyses reveal novel genes associated with chicken adaptation to tropical and frigid environments.
    Shi S; Shao D; Yang L; Liang Q; Han W; Xue Q; Qu L; Leng L; Li Y; Zhao X; Dong P; Walugembe M; Kayang BB; Muhairwa AP; Zhou H; Tong H
    J Adv Res; 2023 May; 47():13-25. PubMed ID: 35907630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing.
    Xu L; Yin L; Qi Y; Tan X; Gao M; Peng J
    Acta Pharm Sin B; 2021 Oct; 11(10):3150-3164. PubMed ID: 34729306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton.
    Wang M; Wang P; Lin M; Ye Z; Li G; Tu L; Shen C; Li J; Yang Q; Zhang X
    Nat Plants; 2018 Feb; 4(2):90-97. PubMed ID: 29379149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes.
    Fan H; Lv P; Huo X; Wu J; Wang Q; Cheng L; Liu Y; Tang QQ; Zhang L; Zhang F; Zheng X; Wu H; Wen B
    Genome Res; 2018 Feb; 28(2):192-202. PubMed ID: 29273625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA methylation in transposable elements buffers the connection between three-dimensional chromatin organization and gene transcription upon rice genome duplication.
    Sun Z; Wang Y; Song Z; Zhang H; Wang Y; Liu K; Ma M; Wang P; Fang Y; Cai D; Li G; Fang Y
    J Adv Res; 2022 Dec; 42():41-53. PubMed ID: 35933090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LPAD: using network construction and label propagation to detect topologically associating domains from Hi-C data.
    Liu J; Li P; Sun J; Guo J
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37139561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization.
    Shinkai S; Sugawara T; Miura H; Hiratani I; Onami S
    Biophys J; 2020 May; 118(9):2220-2228. PubMed ID: 32191860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topologically associating domain boundaries that are stable across diverse cell types are evolutionarily constrained and enriched for heritability.
    McArthur E; Capra JA
    Am J Hum Genet; 2021 Feb; 108(2):269-283. PubMed ID: 33545030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reorganization of 3D chromatin architecture in doxorubicin-resistant breast cancer cells.
    Wang X; Yan J; Ye Z; Zhang Z; Wang S; Hao S; Shen B; Wei G
    Front Cell Dev Biol; 2022; 10():974750. PubMed ID: 36003143
    [No Abstract]   [Full Text] [Related]  

  • 13. The 3D Genome: From Structure to Function.
    Mohanta TK; Mishra AK; Al-Harrasi A
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D genome evolution and reorganization in the Drosophila melanogaster species group.
    Torosin NS; Anand A; Golla TR; Cao W; Ellison CE
    PLoS Genet; 2020 Dec; 16(12):e1009229. PubMed ID: 33284803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin Interaction Responds to Breast Muscle Development and Intramuscular Fat Deposition Between Chinese Indigenous Chicken and Fast-Growing Broiler.
    Tian W; Wang Z; Wang D; Zhi Y; Dong J; Jiang R; Han R; Li Z; Kang X; Li H; Liu X
    Front Cell Dev Biol; 2021; 9():782268. PubMed ID: 34912810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary stability of topologically associating domains is associated with conserved gene regulation.
    Krefting J; Andrade-Navarro MA; Ibn-Salem J
    BMC Biol; 2018 Aug; 16(1):87. PubMed ID: 30086749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of topologically associating domains by structural variations in tetraploid cottons.
    Long Y; Liu Z; Wang P; Yang H; Wang Y; Zhang S; Zhang X; Wang M
    Genomics; 2021 Sep; 113(5):3405-3414. PubMed ID: 34311045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution Hi-C maps highlight multiscale chromatin architecture reorganization during cold stress in Brachypodium distachyon.
    Zhang X; Yu G; Dai Y; Zhang H; Wang K; Han J
    BMC Plant Biol; 2023 May; 23(1):260. PubMed ID: 37193952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphine Re-arranges Chromatin Spatial Architecture of Primate Cortical Neurons.
    Wang L; Wang X; Liu C; Xu W; Kuang W; Bu Q; Li H; Zhao Y; Jiang L; Chen Y; Qin F; Li S; Wei Q; Liu X; Liu B; Chen Y; Dai Y; Wang H; Tian J; Cao G; Zhao Y; Cen X
    Genomics Proteomics Bioinformatics; 2023 Jun; 21(3):551-572. PubMed ID: 37209997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for the Analysis of Topologically Associating Domains (TADs).
    Zufferey M; Tavernari D; Ciriello G
    Methods Mol Biol; 2022; 2301():39-59. PubMed ID: 34415530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.