These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36553590)

  • 1. miRBind: A Deep Learning Method for miRNA Binding Classification.
    Klimentová E; Hejret V; Krčmář J; Grešová K; Giassa IC; Alexiou P
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning to Predict miRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data.
    Lu Y; Leslie CS
    PLoS Comput Biol; 2016 Jul; 12(7):e1005026. PubMed ID: 27438777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Distributed Classifier for MicroRNA Target Prediction with Validation Through TCGA Expression Data.
    Ghoshal A; Zhang J; Roth MA; Xia KM; Grama AY; Chaterji S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1037-1051. PubMed ID: 29993641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of human miRNA targets via graph modeling of the miRNA-target duplex.
    Mohebbi M; Ding L; Malmberg RL; Momany C; Rasheed K; Cai L
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850013. PubMed ID: 30012015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miRTar2GO: a novel rule-based model learning method for cell line specific microRNA target prediction that integrates Ago2 CLIP-Seq and validated microRNA-target interaction data.
    Ahadi A; Sablok G; Hutvagner G
    Nucleic Acids Res; 2017 Apr; 45(6):e42. PubMed ID: 27903911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TargetNet: functional microRNA target prediction with deep neural networks.
    Min S; Lee B; Yoon S
    Bioinformatics; 2022 Jan; 38(3):671-677. PubMed ID: 34677573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miRAW: A deep learning-based approach to predict microRNA targets by analyzing whole microRNA transcripts.
    Pla A; Zhong X; Rayner S
    PLoS Comput Biol; 2018 Jul; 14(7):e1006185. PubMed ID: 30005074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MiRNATIP: a SOM-based miRNA-target interactions predictor.
    Fiannaca A; Rosa M; Paglia L; Rizzo R; Urso A
    BMC Bioinformatics; 2016 Sep; 17(Suppl 11):321. PubMed ID: 28185545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TEC-miTarget: enhancing microRNA target prediction based on deep learning of ribonucleic acid sequences.
    Yang T; Wang Y; He Y
    BMC Bioinformatics; 2024 Apr; 25(1):159. PubMed ID: 38643080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Practical Guide to miRNA Target Prediction.
    Akhtar MM; Micolucci L; Islam MS; Olivieri F; Procopio AD
    Methods Mol Biol; 2019; 1970():1-13. PubMed ID: 30963484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MiRTDL: A Deep Learning Approach for miRNA Target Prediction.
    Shuang Cheng ; Maozu Guo ; Chunyu Wang ; Xiaoyan Liu ; Yang Liu ; Xuejian Wu
    IEEE/ACM Trans Comput Biol Bioinform; 2016 Nov; 13(6):1161-1169. PubMed ID: 28055894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miRLocator: A Python Implementation and Web Server for Predicting miRNAs from Pre-miRNA Sequences.
    Zhang T; Ju L; Zhai J; Song Y; Song J; Ma C
    Methods Mol Biol; 2019; 1932():89-97. PubMed ID: 30701493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of miRNA-Target RNA Interactions Using CLASH.
    Helwak A; Tollervey D
    Methods Mol Biol; 2016; 1358():229-51. PubMed ID: 26463387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepMirTar: a deep-learning approach for predicting human miRNA targets.
    Wen M; Cong P; Zhang Z; Lu H; Li T
    Bioinformatics; 2018 Nov; 34(22):3781-3787. PubMed ID: 29868708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving miRNA Target Prediction Using CLASH Data.
    Li X; Hu H
    Methods Mol Biol; 2019; 1970():75-83. PubMed ID: 30963489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-stream convolutional neural network for microRNA transcription start site feature integration and identification.
    Cha M; Zheng H; Talukder A; Barham C; Li X; Hu H
    Sci Rep; 2021 Mar; 11(1):5625. PubMed ID: 33707582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting.
    Loeb GB; Khan AA; Canner D; Hiatt JB; Shendure J; Darnell RB; Leslie CS; Rudensky AY
    Mol Cell; 2012 Dec; 48(5):760-70. PubMed ID: 23142080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Development of Bioinformatics Tools for microRNA Target Prediction.
    Khatun MS; Alam MA; Shoombuatong W; Mollah MNH; Kurata H; Hasan MM
    Curr Med Chem; 2022; 29(5):865-880. PubMed ID: 34348604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Attribution Sequence Alignment to Interpret Deep Learning Models for miRNA Binding Site Prediction.
    Grešová K; Vaculík O; Alexiou P
    Biology (Basel); 2023 Feb; 12(3):. PubMed ID: 36979061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.