These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36553590)

  • 21. Identifying mRNA sequence elements for target recognition by human Argonaute proteins.
    Li J; Kim T; Nutiu R; Ray D; Hughes TR; Zhang Z
    Genome Res; 2014 May; 24(5):775-85. PubMed ID: 24663241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Argonaute CLIP--a method to identify in vivo targets of miRNAs.
    Jaskiewicz L; Bilen B; Hausser J; Zavolan M
    Methods; 2012 Oct; 58(2):106-12. PubMed ID: 23022257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CLIP-based prediction of mammalian microRNA binding sites.
    Liu C; Mallick B; Long D; Rennie WA; Wolenc A; Carmack CS; Ding Y
    Nucleic Acids Res; 2013 Aug; 41(14):e138. PubMed ID: 23703212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Role of Tertiary Structure in MicroRNA Target Recognition.
    Gan HH; Gunsalus KC
    Methods Mol Biol; 2019; 1970():43-64. PubMed ID: 30963487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and consequences of miRNA-target interactions--beyond repression of gene expression.
    Hausser J; Zavolan M
    Nat Rev Genet; 2014 Sep; 15(9):599-612. PubMed ID: 25022902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets.
    Khorshid M; Hausser J; Zavolan M; van Nimwegen E
    Nat Methods; 2013 Mar; 10(3):253-5. PubMed ID: 23334102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive machine-learning-based analysis of microRNA-target interactions reveals variable transferability of interaction rules across species.
    Ben Or G; Veksler-Lublinsky I
    BMC Bioinformatics; 2021 May; 22(1):264. PubMed ID: 34030625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological features between miRNAs and their targets are unveiled from deep learning models.
    Gu T; Xie M; Barbazuk WB; Lee JH
    Sci Rep; 2021 Dec; 11(1):23825. PubMed ID: 34893648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DRMDA: deep representations-based miRNA-disease association prediction.
    Chen X; Gong Y; Zhang DH; You ZH; Li ZW
    J Cell Mol Med; 2018 Jan; 22(1):472-485. PubMed ID: 28857494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Position-wise binding preference is important for miRNA target site prediction.
    Talukder A; Li X; Hu H
    Bioinformatics; 2020 Jun; 36(12):3680-3686. PubMed ID: 32186709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A miRNA Target Prediction Model Based on Distributed Representation Learning and Deep Learning.
    Sun Y; Xiong F; Sun Y; Zhao Y; Cao Y
    Comput Math Methods Med; 2022; 2022():4490154. PubMed ID: 35924115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unambiguous identification of miRNA:target site interactions by different types of ligation reactions.
    Grosswendt S; Filipchyk A; Manzano M; Klironomos F; Schilling M; Herzog M; Gottwein E; Rajewsky N
    Mol Cell; 2014 Jun; 54(6):1042-1054. PubMed ID: 24857550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MaturePred: efficient identification of microRNAs within novel plant pre-miRNAs.
    Xuan P; Guo M; Huang Y; Li W; Huang Y
    PLoS One; 2011; 6(11):e27422. PubMed ID: 22110646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MiRTif: a support vector machine-based microRNA target interaction filter.
    Yang Y; Wang YP; Li KB
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S4. PubMed ID: 19091027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic miRNA-mRNA interactions coordinate gene expression in adult Anopheles gambiae.
    Fu X; Liu P; Dimopoulos G; Zhu J
    PLoS Genet; 2020 Apr; 16(4):e1008765. PubMed ID: 32339167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of microRNA-target interactions by a target structure based hybridization model.
    Long D; Chan CY; Ding Y
    Pac Symp Biocomput; 2008; ():64-74. PubMed ID: 18232104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. miRTRS: A Recommendation Algorithm for Predicting miRNA Targets.
    Jiang H; Wang J; Li M; Lan W; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):1032-1041. PubMed ID: 30281478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A structural view of microRNA-target recognition.
    Leoni G; Tramontano A
    Nucleic Acids Res; 2016 May; 44(9):e82. PubMed ID: 26825463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the utility of thermodynamic features for microRNA target prediction under relaxed seed and no conservation requirements.
    Lekprasert P; Mayhew M; Ohler U
    PLoS One; 2011; 6(6):e20622. PubMed ID: 21674004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sfold Tools for MicroRNA Target Prediction.
    Rennie W; Kanoria S; Liu C; Carmack CS; Lu J; Ding Y
    Methods Mol Biol; 2019; 1970():31-42. PubMed ID: 30963486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.