BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36553602)

  • 1. Ploidy Status, Nuclear DNA Content and Start Codon Targeted (SCoT) Genetic Homogeneity Assessment in
    Bansal Y; Mujib A; Siddiqui ZH; Mamgain J; Syeed R; Ejaz B
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553602
    [No Abstract]   [Full Text] [Related]  

  • 2. Genome size and gas chromatography-mass spectrometry (GC-MS) analysis of field-grown and in vitro regenerated Pluchea lanceolata plants.
    Mamgain J; Mujib A; Syeed R; Ejaz B; Malik MQ; Bansal Y
    J Appl Genet; 2023 Feb; 64(1):1-21. PubMed ID: 36175751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome size analysis of field grown and somatic embryo regenerated plants in Allium sativum L.
    Malik MQ; Mujib A; Gulzar B; Zafar N; Syeed R; Mamgain J; Ejaz B
    J Appl Genet; 2020 Feb; 61(1):25-35. PubMed ID: 31919659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow cytometry and start codon targeted (SCoT) genetic fidelity assessment of regenerated plantlets in
    Mamgain J; Mujib A; Ejaz B; Gulzar B; Malik MQ; Syeed R
    Plant Cell Tissue Organ Cult; 2022; 150(1):129-140. PubMed ID: 35250130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass propagation through direct and indirect organogenesis in three species of genus Zephyranthes and ploidy assessment of regenerants through flow cytometry.
    Syeed R; Mujib A; Malik MQ; Mamgain J; Ejaz B; Gulzar B; Zafar N
    Mol Biol Rep; 2021 Jan; 48(1):513-526. PubMed ID: 33442831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect Regeneration and Assessment of Genetic Fidelity of Acclimated Plantlets by SCoT, ISSR, and RAPD Markers in
    Rohela GK; Jogam P; Bylla P; Reuben C
    Biomed Res Int; 2019; 2019():3698742. PubMed ID: 31111050
    [No Abstract]   [Full Text] [Related]  

  • 7. Direct somatic embryogenesis and flow cytometric assessment of ploidy stability in regenerants of Caladium × hortulanum 'Fancy'.
    Syeed R; Mujib A; Malik MQ; Gulzar B; Zafar N; Mamgain J; Ejaz B
    J Appl Genet; 2022 May; 63(2):199-211. PubMed ID: 34859368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Homogeneity Revealed Using SCoT, ISSR and RAPD Markers in Micropropagated Pittosporum eriocarpum Royle- An Endemic and Endangered Medicinal Plant.
    Thakur J; Dwivedi MD; Sourabh P; Uniyal PL; Pandey AK
    PLoS One; 2016; 11(7):e0159050. PubMed ID: 27434060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant regeneration through somatic embryogenesis and genome size analysis of Coriandrum sativum L.
    Ali M; Mujib A; Tonk D; Zafar N
    Protoplasma; 2017 Jan; 254(1):343-352. PubMed ID: 26910351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and reproducible somatic embryogenesis and micropropagation in tomato via novel structures - Rhizoid Tubers.
    Saeed W; Naseem S; Gohar D; Ali Z
    PLoS One; 2019; 14(5):e0215929. PubMed ID: 31116740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant regeneration via somatic embryogenesis and shoot organogenesis from immature cotyledons of Camellia nitidissima Chi.
    Lü J; Chen R; Zhang M; da Silva JA; Ma G
    J Plant Physiol; 2013 Sep; 170(13):1202-11. PubMed ID: 23790533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Somatic embryogenesis, pigment accumulation, and synthetic seed production in Digitalis davisiana Heywood.
    Verma SK; Sahin G; Gurel E
    Indian J Exp Biol; 2016 Apr; 54(4):245-53. PubMed ID: 27295921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High frequency regeneration of plants via callus-mediated organogenesis from cotyledon and hypocotyl cultures in a multipurpose tropical tree (Neolamarkia Cadamba).
    Huang H; Wei Y; Zhai Y; Ouyang K; Chen X; Bai L
    Sci Rep; 2020 Mar; 10(1):4558. PubMed ID: 32165694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect somatic embryogenesis of Piper hispidinervum L. and evaluation of the regenerated plants by flow cytometry.
    de Sousa PCA; Silva E Souza SS; Nogueira GF; de Araújo Silva-Cardoso IM; Scherwinski-Pereira JE
    J Genet Eng Biotechnol; 2022 Mar; 20(1):40. PubMed ID: 35230554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction, Subculture Cycle, and Regeneration of Callus in Safed Musli (
    Nakasha JJ; Sinniah UR; Kemat N; Mallappa KS
    Pharmacogn Mag; 2016 Jul; 12(Suppl 4):S460-S464. PubMed ID: 27761075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indirect
    Okello D; Yang S; Komakech R; Chung Y; Rahmat E; Gang R; Omujal F; Lamwaka AV; Kang Y
    Front Plant Sci; 2021; 12():797721. PubMed ID: 34975987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro Shoot Multiplication and Rooting of 'Kashan' and 'Hervy Azerbaijan' Damask Rose (
    Kaviani B; Deltalab B; Kulus D; Khoddamzadeh AA; Roque-Borda CA
    Plants (Basel); 2024 May; 13(10):. PubMed ID: 38794435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of an in vitro plantlet regeneration protocol for unique varieties of brinjal (Solanum melongena L.) var. Mattu Gulla and Perampalli Gulla.
    Muthusamy A; Vidya KS; Pratibha PK; Rao MR; Vidhu SB; Guruprasad KP; Raghavendra U; Gopinath PM; Satyamoorthy K
    Indian J Exp Biol; 2014 Jan; 52(1):80-8. PubMed ID: 24617019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indirect organogenesis-mediated high frequency conversion of non-embryonic synthetic seeds, essential oil profiling and antibacterial activity in genetically stable plants of Patchouli.
    Lalthafamkimi L; Bhau BS; Kumar S; Mukhia S; Kumar R; Banik D; Bhattacharyya P
    3 Biotech; 2022 Dec; 12(12):349. PubMed ID: 36386565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indirect shoot organogenesis from leaf explants of Adhatoda vasica Nees.
    Mandal J; Laxminarayana U
    Springerplus; 2014; 3():648. PubMed ID: 25485191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.