BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36554172)

  • 1. Path Planning Research of a UAV Base Station Searching for Disaster Victims' Location Information Based on Deep Reinforcement Learning.
    Zhao J; Gan Z; Liang J; Wang C; Yue K; Li W; Li Y; Li R
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proactive Handover Decision for UAVs with Deep Reinforcement Learning.
    Jang Y; Raza SM; Kim M; Choo H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-UAV Path Planning in GPS and Communication Denial Environment.
    Xu Y; Wei Y; Wang D; Jiang K; Deng H
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-UAV simultaneous target assignment and path planning based on deep reinforcement learning in dynamic multiple obstacles environments.
    Kong X; Zhou Y; Li Z; Wang S
    Front Neurorobot; 2023; 17():1302898. PubMed ID: 38318422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time route planning of unmanned aerial vehicles based on improved soft actor-critic algorithm.
    Zhou Y; Shu J; Zheng X; Hao H; Song H
    Front Neurorobot; 2022; 16():1025817. PubMed ID: 36545396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UAV Path Planning Algorithm Based on Improved Harris Hawks Optimization.
    Zhang R; Li S; Ding Y; Qin X; Xia Q
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Reinforcement Learning for UAV Trajectory Design Considering Mobile Ground Users.
    Lee W; Jeon Y; Kim T; Kim YI
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A UAV Maneuver Decision-Making Algorithm for Autonomous Airdrop Based on Deep Reinforcement Learning.
    Li K; Zhang K; Zhang Z; Liu Z; Hua S; He J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Stability and Performance in Mobile Robot Path Planning with PMR-Dueling DQN Algorithm.
    Deguale DA; Yu L; Sinishaw ML; Li K
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Robot Path Planning Method Based on Deep Reinforcement Learning.
    Han H; Wang J; Kuang L; Han X; Xue H
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous mission planning for a single unmanned aerial vehicle (UAV) with attention-based deep reinforcement learning.
    Jung M; Oh H
    PeerJ Comput Sci; 2022; 8():e1119. PubMed ID: 36426245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heuristic Q-learning based on experience replay for three-dimensional path planning of the unmanned aerial vehicle.
    Xie R; Meng Z; Zhou Y; Ma Y; Wu Z
    Sci Prog; 2020; 103(1):36850419879024. PubMed ID: 31829875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.
    Xie J; Peng X; Wang H; Niu W; Zheng X
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Global Path Planning Optimization for Cellular-Connected UAVs under Link Reliability Constraint.
    Behjati M; Nordin R; Zulkifley MA; Abdullah NF
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal energy efficient path planning of UAV using hybrid MACO-MEA* algorithm: theoretical and experimental approach.
    Balasubramanian E; Elangovan E; Tamilarasan P; Kanagachidambaresan GR; Chutia D
    J Ambient Intell Humaniz Comput; 2022 Jun; ():1-21. PubMed ID: 35789596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Path Planning for Efficient Data Collection in UAV-Aided WSNs for Emergency Applications.
    Poudel S; Moh S
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Path Planning Algorithm for Unmanned Surface Vessel Based on Multiobjective Reinforcement Learning.
    Yang C; Zhao Y; Cai X; Wei W; Feng X; Zhou K
    Comput Intell Neurosci; 2023; 2023():2146314. PubMed ID: 36844696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Reinforcement Learning for Joint Trajectory Planning, Transmission Scheduling, and Access Control in UAV-Assisted Wireless Sensor Networks.
    Luo X; Chen C; Zeng C; Li C; Xu J; Gong S
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Countering a Drone in a 3D Space: Analyzing Deep Reinforcement Learning Methods.
    Çetin E; Barrado C; Pastor E
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two Tier Slicing Resource Allocation Algorithm Based on Deep Reinforcement Learning and Joint Bidding in Wireless Access Networks.
    Chen G; Zhang X; Shen F; Zeng Q
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.