These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Universal scaling of Lyapunov exponents in coupled chaotic oscillators. Liu Z; Lai YC; Matías MA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):045203. PubMed ID: 12786425 [TBL] [Abstract][Full Text] [Related]
3. Transition to intermittent chaotic synchronization. Zhao L; Lai YC; Shih CW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036212. PubMed ID: 16241553 [TBL] [Abstract][Full Text] [Related]
4. Curry-Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems. Mugnaine M; Batista AM; Caldas IL; Szezech JD; de Carvalho RE; Viana RL Chaos; 2021 Feb; 31(2):023125. PubMed ID: 33653060 [TBL] [Abstract][Full Text] [Related]
5. Amplitude death in coupled chaotic oscillators. Prasad A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056204. PubMed ID: 16383724 [TBL] [Abstract][Full Text] [Related]
6. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application. Liu HF; Yang YZ; Dai ZH; Yu ZH Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175 [TBL] [Abstract][Full Text] [Related]
7. Engineering synchronization of chaotic oscillators using controller based coupling design. Padmanaban E; Hens C; Dana SK Chaos; 2011 Mar; 21(1):013110. PubMed ID: 21456824 [TBL] [Abstract][Full Text] [Related]
8. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators. He Z; Sun Y; Zhan M Chaos; 2013 Dec; 23(4):043139. PubMed ID: 24387578 [TBL] [Abstract][Full Text] [Related]
9. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation. Isaeva OB; Kuznetsov SP; Mosekilde E Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016228. PubMed ID: 21867294 [TBL] [Abstract][Full Text] [Related]
10. A Lorenz-type attractor in a piecewise-smooth system: Rigorous results. Belykh VN; Barabash NV; Belykh IV Chaos; 2019 Oct; 29(10):103108. PubMed ID: 31675821 [TBL] [Abstract][Full Text] [Related]
11. Bistability and hidden attractors in the paradigmatic Rössler'76 system. Malasoma JM; Malasoma N Chaos; 2020 Dec; 30(12):123144. PubMed ID: 33380068 [TBL] [Abstract][Full Text] [Related]
12. Attractor reconstruction with reservoir computers: The effect of the reservoir's conditional Lyapunov exponents on faithful attractor reconstruction. Hart JD Chaos; 2024 Apr; 34(4):. PubMed ID: 38579149 [TBL] [Abstract][Full Text] [Related]
13. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Lai YC; Liu Z; Billings L; Schwartz IB Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779 [TBL] [Abstract][Full Text] [Related]
14. Symbolic diffusion entropy rate of chaotic time series as a surrogate measure for the largest Lyapunov exponent. Shiozawa K; Miyano T Phys Rev E; 2019 Sep; 100(3-1):032221. PubMed ID: 31639895 [TBL] [Abstract][Full Text] [Related]
15. Effect of mixed coupling on relay-coupled Rössler and Lorenz oscillators. Sharma A; Shrimali MD; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062907. PubMed ID: 25615164 [TBL] [Abstract][Full Text] [Related]
16. Coupled Lorenz oscillators near the Hopf boundary: Multistability, intermingled basins, and quasiriddling. Wontchui TT; Effa JY; Fouda HPE; Ujjwal SR; Ramaswamy R Phys Rev E; 2017 Dec; 96(6-1):062203. PubMed ID: 29347357 [TBL] [Abstract][Full Text] [Related]
17. Amplified response in coupled chaotic oscillators by induced heterogeneity. Padmanaban E; Saha S; Vigneshwaran M; Dana SK Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062916. PubMed ID: 26764783 [TBL] [Abstract][Full Text] [Related]
18. Lag synchronization and scaling of chaotic attractor in coupled system. Bhowmick SK; Pal P; Roy PK; Dana SK Chaos; 2012 Jun; 22(2):023151. PubMed ID: 22757558 [TBL] [Abstract][Full Text] [Related]
19. Data-driven modeling and forecasting of chaotic dynamics on inertial manifolds constructed as spectral submanifolds. Liu A; Axås J; Haller G Chaos; 2024 Mar; 34(3):. PubMed ID: 38531092 [TBL] [Abstract][Full Text] [Related]
20. On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators. Grines EA; Kazakov A; Sataev IR Chaos; 2022 Sep; 32(9):093105. PubMed ID: 36182377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]