These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 36554217)
1. Optimization Criteria and Efficiency of a Thermoelectric Generator. Juárez-Huerta VH; Sánchez-Salas N; Chimal-Eguía JC Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554217 [TBL] [Abstract][Full Text] [Related]
2. Thermoelectric generator in endoreversible approximation: The effect of heat-transfer law under finite physical dimensions constraint. Kaur J; Johal RS; Feidt M Phys Rev E; 2022 Mar; 105(3-1):034122. PubMed ID: 35428100 [TBL] [Abstract][Full Text] [Related]
3. Maximum Efficient Power Performance Analysis and Multi-Objective Optimization of Two-Stage Thermoelectric Generators. Tian L; Chen L; Ge Y; Shi S Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420463 [TBL] [Abstract][Full Text] [Related]
4. From local force-flux relationships to internal dissipations and their impact on heat engine performance: the illustrative case of a thermoelectric generator. Apertet Y; Ouerdane H; Goupil C; Lecoeur P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022137. PubMed ID: 24032805 [TBL] [Abstract][Full Text] [Related]
5. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator. Apertet Y; Ouerdane H; Goupil C; Lecoeur P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031116. PubMed ID: 22587047 [TBL] [Abstract][Full Text] [Related]
6. Study of the performance of thermoelectric generator for waste heat recovery from chimney: impact of nanofluid-microchannel cooling system. Eldesoukey A; Hassan H Environ Sci Pollut Res Int; 2022 Oct; 29(49):74242-74263. PubMed ID: 35635664 [TBL] [Abstract][Full Text] [Related]
7. Revisiting Feynman's ratchet with thermoelectric transport theory. Apertet Y; Ouerdane H; Goupil C; Lecoeur P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012113. PubMed ID: 25122257 [TBL] [Abstract][Full Text] [Related]
8. Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines. Ramírez-Restrepo R; Sagastume-Gutiérrez A; Cabello-Eras J; Hernández B; Duarte-Forero J Heliyon; 2021 Nov; 7(11):e08273. PubMed ID: 34765787 [TBL] [Abstract][Full Text] [Related]
9. Experiments on Waste Heat Thermoelectric Generation for Passenger Vehicles. Chen J; Xie W; Dai M; Shen G; Li G; Tang Y Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056272 [TBL] [Abstract][Full Text] [Related]
10. Influences of the Thomson Effect on the Performance of a Thermoelectric Generator-Driven Thermoelectric Heat Pump Combined Device. Feng Y; Chen L; Meng F; Sun F Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265119 [TBL] [Abstract][Full Text] [Related]
11. Efficient design optimization of a miniaturized thermoelectric generator for electrically active implants based on parametric model order reduction. Rao Y; Yuan C; Sadashivaiah G; Hohlfeld D; Bechtold T Int J Numer Method Biomed Eng; 2021 Oct; 37(10):e3517. PubMed ID: 34338421 [TBL] [Abstract][Full Text] [Related]
12. Analysis of Nonlinear Transient Energy Effect on Thermoelectric Energy Storage Structure. Yu J; Zhu H; Kong L; Wang H; Su J; Zhu Q Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824500 [TBL] [Abstract][Full Text] [Related]
13. Towards efficient design optimization of a miniaturized thermoelectric generator for electrically active implants via model order reduction and submodeling technique. Yuan C; Kreß S; Sadashivaiah G; Rudnyi EB; Hohlfeld D; Bechtold T Int J Numer Method Biomed Eng; 2020 Apr; 36(4):e3311. PubMed ID: 31943823 [TBL] [Abstract][Full Text] [Related]
14. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study. Rojas-Gamboa DA; Rodríguez JI; Gonzalez-Ayala J; Angulo-Brown F Phys Rev E; 2018 Aug; 98(2-1):022130. PubMed ID: 30253568 [TBL] [Abstract][Full Text] [Related]
15. Hybrid carbon thermal interface materials for thermoelectric generator devices. Chung SH; Kim JT; Kim DH Sci Rep; 2020 Nov; 10(1):18854. PubMed ID: 33139765 [TBL] [Abstract][Full Text] [Related]
16. Maximum power and the corresponding efficiency for a Carnot-like thermoelectric cycle based on fluctuation theorem. Hua Y; Guo ZY Phys Rev E; 2024 Feb; 109(2-1):024130. PubMed ID: 38491639 [TBL] [Abstract][Full Text] [Related]
17. High-Performance Thermoelectric Generators for Field Deployments. Kishore RA; Nozariasbmarz A; Poudel B; Priya S ACS Appl Mater Interfaces; 2020 Mar; 12(9):10389-10401. PubMed ID: 32040298 [TBL] [Abstract][Full Text] [Related]
18. Modeling the Effects of Module Size and Material Property on Thermoelectric Generator Power. Wang L; Li K; Zhang S; Liu C; Zhang Z; Chen J; Gu M ACS Omega; 2020 Nov; 5(46):29844-29853. PubMed ID: 33251419 [TBL] [Abstract][Full Text] [Related]
19. Design of Nano-Structured Micro-Thermoelectric Generator: Load Resistance and Inflections in the Efficiency. Badillo-Ruiz CA; Olivares-Robles MA; Chanona-Perez JJ Entropy (Basel); 2019 Feb; 21(3):. PubMed ID: 33266940 [TBL] [Abstract][Full Text] [Related]
20. Optimal Heat Exchanger Area Distribution and Low-Temperature Heat Sink Temperature for Power Optimization of an Endoreversible Space Carnot Cycle. Wang T; Ge Y; Chen L; Feng H; Yu J Entropy (Basel); 2021 Sep; 23(10):. PubMed ID: 34682008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]