These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36554221)

  • 1. Remaining Useful Life Prediction Using Dual-Channel LSTM with Time Feature and Its Difference.
    Peng C; Wu J; Wang Q; Gui W; Tang Z
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robustness testing framework for RUL prediction Deep LSTM networks.
    Sayah M; Guebli D; Al Masry Z; Zerhouni N
    ISA Trans; 2021 Jul; 113():28-38. PubMed ID: 32646591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for Remaining Useful Life Prediction.
    Zhao C; Huang X; Li Y; Yousaf Iqbal M
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network.
    Wang H; Yang J; Shi L; Wang R
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion.
    Peng C; Chen Y; Chen Q; Tang Z; Li L; Gui W
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme.
    Hou G; Xu S; Zhou N; Yang L; Fu Q
    Comput Intell Neurosci; 2020; 2020():9601389. PubMed ID: 32802032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptively Lightweight Spatiotemporal Information-Extraction-Operator-Based DL Method for Aero-Engine RUL Prediction.
    Shi J; Gao J; Xiang S
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification.
    Yang J; Peng Y; Xie J; Wang P
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An enhanced CNN-LSTM remaining useful life prediction model for aircraft engine with attention mechanism.
    Li H; Wang Z; Li Z
    PeerJ Comput Sci; 2022; 8():e1084. PubMed ID: 36091994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion.
    Peng C; Chen Y; Gui W; Tang Z; Li C
    Sci Rep; 2022 Apr; 12(1):6491. PubMed ID: 35444248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machinery Prognostics and High-Dimensional Data Feature Extraction Based on a Transformer Self-Attention Transfer Network.
    Sun S; Peng T; Huang H
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel transformer-based DL model enhanced by position-sensitive attention and gated hierarchical LSTM for aero-engine RUL prediction.
    Chen X
    Sci Rep; 2024 May; 14(1):10061. PubMed ID: 38698017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intelligent Online Monitoring of Rolling Bearing: Diagnosis and Prognosis.
    Hotait H; Chiementin X; Rasolofondraibe L
    Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34206610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time Series Multiple Channel Convolutional Neural Network with Attention-Based Long Short-Term Memory for Predicting Bearing Remaining Useful Life.
    Jiang JR; Lee JE; Zeng YM
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31888110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remaining Useful-Life Prediction of the Milling Cutting Tool Using Time-Frequency-Based Features and Deep Learning Models.
    Sayyad S; Kumar S; Bongale A; Kotecha K; Abraham A
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Prediction of the Remaining Useful Life of Rotating Machinery Based on an Adaptive Maximum Second-Order Cyclostationarity Blind Deconvolution and a Convolutional LSTM Autoencoder.
    Gao Y; Ahmad Z; Kim JM
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38675999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Few-shot RUL prediction for engines based on CNN-GRU model.
    Sun S; Wang J; Xiao Y; Peng J; Zhou X
    Sci Rep; 2024 Jul; 14(1):16041. PubMed ID: 38992098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings.
    Yan X; Xia X; Wang L; Zhang Z
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint Learning of Failure Mode Recognition and Prognostics for Degradation Processes.
    Wang D; Xian X; Song C
    IEEE Trans Autom Sci Eng; 2024 Apr; 21(2):1421-1433. PubMed ID: 38595999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remaining Useful Life Prediction of Rolling Bearings Based on Multi-scale Permutation Entropy and ISSA-LSTM.
    Wang H; Zhang X; Ren M; Xu T; Lu C; Zhao Z
    Entropy (Basel); 2023 Oct; 25(11):. PubMed ID: 37998169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.