These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 36554237)
1. 4E Assessment of an Organic Rankine Cycle (ORC) Activated with Waste Heat of a Flash-Binary Geothermal Power Plant. Ambriz-Díaz VM; Rosas IY; Chávez O; Rubio-Maya C Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554237 [TBL] [Abstract][Full Text] [Related]
2. Energy, Exergy, Exergoeconomic and Exergoenvironmental Impact Analyses and Optimization of Various Geothermal Power Cycle Configurations. Shamoushaki M; Aliehyaei M; Rosen MA Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828181 [TBL] [Abstract][Full Text] [Related]
3. Advanced Exergy-Based Analysis of an Organic Rankine Cycle (ORC) for Waste Heat Recovery. Fergani Z; Morosuk T Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895596 [TBL] [Abstract][Full Text] [Related]
4. A review of conventional and exergetic life cycle assessments of organic Rankine cycle plants exploiting various low-temperature energy resources. Oyekale J; Emagbetere E Heliyon; 2022 Jul; 8(7):e09833. PubMed ID: 35815127 [TBL] [Abstract][Full Text] [Related]
5. Exergoeconomic Analysis of a Mechanical Compression Refrigeration Unit Run by an ORC. Taban D; Apostol V; Grosu L; Balan MC; Pop H; Dobre C; Dobrovicescu A Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998223 [TBL] [Abstract][Full Text] [Related]
6. Energy, Exergy, Exergoeconomic and Emergy-Based Exergoeconomic (Emergoeconomic) Analyses of a Biomass Combustion Waste Heat Recovery Organic Rankine Cycle. Effatpanah SK; Ahmadi MH; Delbari SH; Lorenzini G Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205502 [TBL] [Abstract][Full Text] [Related]
7. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle. Huang S; Li C; Tan T; Fu P; Wang L; Yang Y Entropy (Basel); 2018 Jan; 20(2):. PubMed ID: 33265180 [TBL] [Abstract][Full Text] [Related]
8. Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery Aboelazayem O; Gadalla M; Alhajri I; Saha B Renew Energy; 2021 Feb; 164():433-443. PubMed ID: 32963424 [TBL] [Abstract][Full Text] [Related]
9. Exergoeconomic analysis and multi-objective optimization of ORC configurations via Taguchi-Grey Relational Methods. Özdemir Küçük E; Kılıç M Heliyon; 2023 Apr; 9(4):e15007. PubMed ID: 37064436 [TBL] [Abstract][Full Text] [Related]
10. Energy, exergy, and environmental assessment of a small-scale solar organic Rankine cycle using different organic fluids. Polanco Piñerez G; Valencia Ochoa G; Duarte-Forero J Heliyon; 2021 Sep; 7(9):e07947. PubMed ID: 34553085 [TBL] [Abstract][Full Text] [Related]
11. Technical assessment of novel organic Rankine cycle driven cascade refrigeration system using environmental friendly refrigerants: 4E and optimization approaches. Bhuvaneshwaran K; Govindasamy PK Environ Sci Pollut Res Int; 2023 Mar; 30(12):35096-35114. PubMed ID: 36525184 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Alibaba M; Pourdarbani R; Manesh MHK; Ochoa GV; Forero JD Heliyon; 2020 Apr; 6(4):e03758. PubMed ID: 32382674 [TBL] [Abstract][Full Text] [Related]
13. Exergy and Exergoeconomic Analysis of a Cogeneration Hybrid Solar Organic Rankine Cycle with Ejector. Tashtoush B; Morosuk T; Chudasama J Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286476 [TBL] [Abstract][Full Text] [Related]
14. Exergy-Based Multi-Objective Optimization of an Organic Rankine Cycle with a Zeotropic Mixture. Fergani Z; Morosuk T; Touil D Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441094 [TBL] [Abstract][Full Text] [Related]
15. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery. Liu P; Shu G; Tian H; Wang X Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265228 [TBL] [Abstract][Full Text] [Related]
16. Comparison of exergy and exergy economic evaluation of different geothermal cogeneration systems for optimal waste energy recovery. Guo Q; Khanmohammadi S Chemosphere; 2023 Oct; 339():139586. PubMed ID: 37516323 [TBL] [Abstract][Full Text] [Related]
17. Exergy, exergoeconomic optimization and exergoenvironmental analysis of a hybrid solar, wind, and marine energy power system: A strategy for carbon-free electrical production. Zainul R; Basem A; J Alfaker M; Sharma P; Kumar A; Al-Bahrani M; Elawady A; Abbas M; Fooladi H; Pandey S Heliyon; 2024 Aug; 10(16):e35171. PubMed ID: 39253151 [TBL] [Abstract][Full Text] [Related]
18. Exergy Analysis of Two-Stage Organic Rankine Cycle Power Generation System. Liu G; Wang Q; Xu J; Miao Z Entropy (Basel); 2020 Dec; 23(1):. PubMed ID: 33396767 [TBL] [Abstract][Full Text] [Related]
19. Environmental sustainability of integrating the organic Rankin cycle with anaerobic digestion and combined heat and power generation. Bacenetti J; Fusi A; Azapagic A Sci Total Environ; 2019 Mar; 658():684-696. PubMed ID: 30678020 [TBL] [Abstract][Full Text] [Related]
20. "3E" Analysis and Working Fluid Selection for a Cogeneration System for Geothermal Large Temperature Difference Utilization. Yin J; Zhu B; Zhang Y; Huang J ACS Omega; 2024 Apr; 9(14):16221-16236. PubMed ID: 38617693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]