These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 36554276)
21. Pilot study comparison of regenerable and emerging single-use anion exchange resins for treatment of groundwater contaminated by per- and polyfluoroalkyl substances (PFASs). Ellis AC; Liu CJ; Fang Y; Boyer TH; Schaefer CE; Higgins CP; Strathmann TJ Water Res; 2022 Sep; 223():119019. PubMed ID: 36049246 [TBL] [Abstract][Full Text] [Related]
22. Critical review on phytoremediation of polyfluoroalkyl substances from environmental matrices: Need for global concern. Kavusi E; Shahi Khalaf Ansar B; Ebrahimi S; Sharma R; Ghoreishi SS; Nobaharan K; Abdoli S; Dehghanian Z; Asgari Lajayer B; Senapathi V; Price GW; Astatkie T Environ Res; 2023 Jan; 217():114844. PubMed ID: 36403653 [TBL] [Abstract][Full Text] [Related]
24. A review of the emerging treatment technologies for PFAS contaminated soils. Mahinroosta R; Senevirathna L J Environ Manage; 2020 Feb; 255():109896. PubMed ID: 32063301 [TBL] [Abstract][Full Text] [Related]
25. Destruction of PFAS in AFFF-impacted fire training pit water, with a continuous hydrothermal alkaline treatment reactor. Pinkard BR; Austin C; Purohit AL; Li J; Novosselov IV Chemosphere; 2023 Feb; 314():137681. PubMed ID: 36584826 [TBL] [Abstract][Full Text] [Related]
26. Anion exchange resin removal of per- and polyfluoroalkyl substances (PFAS) from impacted water: A critical review. Boyer TH; Fang Y; Ellis A; Dietz R; Choi YJ; Schaefer CE; Higgins CP; Strathmann TJ Water Res; 2021 Jul; 200():117244. PubMed ID: 34089925 [TBL] [Abstract][Full Text] [Related]
27. Removal of Per- and Polyfluoroalkyl substances by anion exchange resins: Scale-up of rapid small-scale column test data. Cheng L; Knappe DRU Water Res; 2024 Feb; 249():120956. PubMed ID: 38103444 [TBL] [Abstract][Full Text] [Related]
28. The impact of two fluoropolymer manufacturing facilities on downstream contamination of a river and drinking water resources with per- and polyfluoroalkyl substances. Bach C; Dauchy X; Boiteux V; Colin A; Hemard J; Sagres V; Rosin C; Munoz JF Environ Sci Pollut Res Int; 2017 Feb; 24(5):4916-4925. PubMed ID: 27988902 [TBL] [Abstract][Full Text] [Related]
29. PFAS fate and destruction mechanisms during thermal treatment: a comprehensive review. Longendyke GK; Katel S; Wang Y Environ Sci Process Impacts; 2022 Feb; 24(2):196-208. PubMed ID: 34985474 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of a national data set for insights into sources, composition, and concentrations of per- and polyfluoroalkyl substances (PFASs) in U.S. drinking water. Guelfo JL; Adamson DT Environ Pollut; 2018 May; 236():505-513. PubMed ID: 29427949 [TBL] [Abstract][Full Text] [Related]
31. Foam fractionation and electrochemical oxidation for the treatment of per- and polyfluoroalkyl substances (PFAS) in environmental water samples. Wang Y; Ji Y; Li K; Huang Q Chemosphere; 2023 Oct; 339():139615. PubMed ID: 37499808 [TBL] [Abstract][Full Text] [Related]
32. Concentrating Per- and Polyfluoroalkyl Substances (PFAS) in Municipal Solid Waste Landfill Leachate Using Foam Separation. Robey NM; da Silva BF; Annable MD; Townsend TG; Bowden JA Environ Sci Technol; 2020 Oct; 54(19):12550-12559. PubMed ID: 32865409 [TBL] [Abstract][Full Text] [Related]
33. Sorptive removal of per- and polyfluoroalkyl substances from aqueous solution: Enhanced sorption, challenges and perspectives. Yu H; Chen H; Fang B; Sun H Sci Total Environ; 2023 Feb; 861():160647. PubMed ID: 36460105 [TBL] [Abstract][Full Text] [Related]
34. Critical Review of Thermal Decomposition of Per- and Polyfluoroalkyl Substances: Mechanisms and Implications for Thermal Treatment Processes. Wang J; Lin Z; He X; Song M; Westerhoff P; Doudrick K; Hanigan D Environ Sci Technol; 2022 May; 56(9):5355-5370. PubMed ID: 35446563 [TBL] [Abstract][Full Text] [Related]
35. Challenges of aqueous per- and polyfluoroalkyl substances (PFASs) and their foreseeable removal strategies. Ji B; Kang P; Wei T; Zhao Y Chemosphere; 2020 Jul; 250():126316. PubMed ID: 32120153 [TBL] [Abstract][Full Text] [Related]
36. Estimating the number of airports potentially contaminated with perfluoroalkyl and polyfluoroalkyl substances from aqueous film forming foam: A Canadian example. Milley SA; Koch I; Fortin P; Archer J; Reynolds D; Weber KP J Environ Manage; 2018 Sep; 222():122-131. PubMed ID: 29807261 [TBL] [Abstract][Full Text] [Related]
37. Innovative techniques for combating a common enemy forever chemicals: A comprehensive approach to mitigating per- and polyfluoroalkyl substances (PFAS) contamination. Bayode AA; Emmanuel SS; Akinyemi AO; Ore OT; Akpotu SO; Koko DT; Momodu DE; López-Maldonado EA Environ Res; 2024 Nov; 261():119719. PubMed ID: 39098711 [TBL] [Abstract][Full Text] [Related]
38. Hydrolytically Stable Ionic Fluorogels for High-Performance Remediation of Per- and Polyfluoroalkyl Substances (PFAS) from Natural Water. Manning IM; Guan Pin Chew N; Macdonald HP; Miller KE; Strynar MJ; Coronell O; Leibfarth FA Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202208150. PubMed ID: 35945652 [TBL] [Abstract][Full Text] [Related]
39. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Kurwadkar S; Dane J; Kanel SR; Nadagouda MN; Cawdrey RW; Ambade B; Struckhoff GC; Wilkin R Sci Total Environ; 2022 Feb; 809():151003. PubMed ID: 34695467 [TBL] [Abstract][Full Text] [Related]
40. Characterization of per- and polyfluoroalkyl substances on fire suppression system piping and optimization of removal methods. Lang JR; McDonough J; Guillette TC; Storch P; Anderson J; Liles D; Prigge R; Miles JAL; Divine C Chemosphere; 2022 Dec; 308(Pt 2):136254. PubMed ID: 36108758 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]