These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 36554314)

  • 1. CEEMDAN-IPSO-LSTM: A Novel Model for Short-Term Passenger Flow Prediction in Urban Rail Transit Systems.
    Zeng L; Li Z; Yang J; Xu X
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature Prediction of Seasonal Frozen Subgrades Based on CEEMDAN-LSTM Hybrid Model.
    Chen L; Liu X; Zeng C; He X; Chen F; Zhu B
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas Concentration Prediction Based on IWOA-LSTM-CEEMDAN Residual Correction Model.
    Xu N; Wang X; Meng X; Chang H
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow.
    Chen Q; Wen D; Li X; Chen D; Lv H; Zhang J; Gao P
    PLoS One; 2019; 14(9):e0222365. PubMed ID: 31509599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting.
    Yang S; Yuan A; Yu Z
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11689-11705. PubMed ID: 36098919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting mine water inflow volumes using a decomposition-optimization algorithm-machine learning approach.
    Bian J; Hou T; Ren D; Lin C; Qiao X; Ma X; Ma J; Wang Y; Wang J; Liang X
    Sci Rep; 2024 Aug; 14(1):17777. PubMed ID: 39090145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic real-time forecasting technique for reclaimed water volumes in urban river environmental management.
    Zhang L; Wang C; Hu W; Wang X; Wang H; Sun X; Ren W; Feng Y
    Environ Res; 2024 May; 248():118267. PubMed ID: 38244969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Improved STL-LSTM Model for Daily Bus Passenger Flow Prediction during the COVID-19 Pandemic.
    Jiao F; Huang L; Song R; Huang H
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-step forecasting of dissolved oxygen in River Ganga based on CEEMDAN-AdaBoost-BiLSTM-LSTM model.
    Pant N; Toshniwal D; Gurjar BR
    Sci Rep; 2024 May; 14(1):11199. PubMed ID: 38755217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PM2.5 concentration prediction using weighted CEEMDAN and improved LSTM neural network.
    Zhang L; Liu J; Feng Y; Wu P; He P
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):75104-75115. PubMed ID: 37213020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction model of land surface settlement deformation based on improved LSTM method: CEEMDAN-ICA-AM-LSTM (CIAL) prediction model.
    Zhu S; Qin Y; Meng X; Xie L; Zhang Y; Yuan Y
    PLoS One; 2024; 19(3):e0298524. PubMed ID: 38452152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational and Mathematical Methods in Medicine Prediction of COVID-19 in BRICS Countries: An Integrated Deep Learning Model of CEEMDAN-R-ILSTM-Elman.
    Zhao Q; Zheng Z
    Comput Math Methods Med; 2022; 2022():1566727. PubMed ID: 35419081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel hybrid model for six main pollutant concentrations forecasting based on improved LSTM neural networks.
    Xu S; Li W; Zhu Y; Xu A
    Sci Rep; 2022 Aug; 12(1):14434. PubMed ID: 36002466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new denoising approach based on mode decomposition applied to the stock market time series: 2LE-CEEMDAN.
    Akşehir ZD; Kılıç E
    PeerJ Comput Sci; 2024; 10():e1852. PubMed ID: 38435596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid prediction model of dissolved oxygen concentration based on secondary decomposition and bidirectional gate recurrent unit.
    Jiao J; Ma Q; Liu F; Zhao L; Huang S
    Environ Geochem Health; 2024 Mar; 46(4):127. PubMed ID: 38483668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cosine adaptive particle swarm optimization based long-short term memory method for urban green area prediction.
    Tian H; Yuan H; Yan K; Guo J
    PeerJ Comput Sci; 2024; 10():e2048. PubMed ID: 38855216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daily flow prediction of the Huayuankou hydrometeorological station based on the coupled CEEMDAN-SE-BiLSTM model.
    Li H; Zhang X; Sun S; Wen Y; Yin Q
    Sci Rep; 2023 Nov; 13(1):18915. PubMed ID: 37919397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition.
    Zhang X; Zhang Q; Zhang G; Nie Z; Gui Z; Que H
    Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IPSO-LSTM hybrid model for predicting online public opinion trends in emergencies.
    Mu G; Liao Z; Li J; Qin N; Yang Z
    PLoS One; 2023; 18(10):e0292677. PubMed ID: 37815983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of sea ice area based on the CEEMDAN-SO-BiLSTM model.
    Guo Q; Zhang H; Zhang Y; Jiang X
    PeerJ; 2023; 11():e15748. PubMed ID: 37483978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.