These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36554671)

  • 21. Nitrogen-doped porous carbon encapsulating iron nanoparticles for enhanced sulfathiazole removal via peroxymonosulfate activation.
    Chen L; Huang Y; Zhou M; Xing K; Lv W; Wang W; Chen H; Yao Y
    Chemosphere; 2020 Jul; 250():126300. PubMed ID: 32113094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneous activation of peroxymonosulfate by a biochar-supported Co
    Xu H; Zhang Y; Li J; Hao Q; Li X; Liu F
    Environ Pollut; 2020 Feb; 257():113610. PubMed ID: 31761599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developing Prussian blue/wood-derived biochar catalyst for persistent organic pollutant degradation: Preparation, characterization, and mechanism.
    Zheng D; Wang Y; Jia X; Yao W; Wang S; Li Z; Sun C; Tan H; Zhang Y
    Chemosphere; 2024 Mar; 351():141150. PubMed ID: 38211784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochar-Based Single-Atom Catalyst with Fe-N
    Xue X; Xue N; Ouyang D; Yang L; Wang Y; Zhu H; Aihemaiti A; Yin J
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38035388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical-enhanced Fe
    Jiang H; Qi Z; Wang Z
    Chemosphere; 2022 Dec; 308(Pt 1):136148. PubMed ID: 36049640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preliminary study on the electrocatalytic performance of an iron biochar catalyst prepared from iron-enriched plants.
    Cao X; Huang Y; Tang C; Wang J; Jonson D; Fang Y
    J Environ Sci (China); 2020 Feb; 88():81-89. PubMed ID: 31862082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway.
    Li Z; Sun Y; Yang Y; Han Y; Wang T; Chen J; Tsang DCW
    Environ Res; 2020 Apr; 183():109156. PubMed ID: 32000003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wood induced preparation of Fe
    Shi J; Dai B; Shen X; Xu L; Zhang Y; Gan L
    J Environ Manage; 2023 Aug; 340():117978. PubMed ID: 37116415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fe@Fe
    Chen D; Zheng Z; Zhang F; Ke R; Sun N; Wang Y; Wang Y
    Water Sci Technol; 2022 May; 85(10):2797-2810. PubMed ID: 35638788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of N-doped biochar from sewage sludge and melamine for peroxymonosulfate activation: N-functionality and catalytic mechanisms.
    Mian MM; Liu G; Zhou H
    Sci Total Environ; 2020 Nov; 744():140862. PubMed ID: 32687994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonprecious bimetallic Fe, Mo-embedded N-enriched porous biochar for efficient oxidation of aqueous organic contaminants.
    Yao Y; Hu H; Zheng H; Hu H; Tang Y; Liu X; Wang S
    J Hazard Mater; 2022 Jan; 422():126776. PubMed ID: 34399226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of nitrogen-doped biochar activated peroxymonosulfate for degradation of 2,4-dichlorophenol.
    Yan J; Chen C; Sun H; Su X; Zhang S
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):37475-37486. PubMed ID: 36574126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel Fe-rectorite composite catalyst synergetic photoinduced peroxymonosulfate activation for efficient degradation of antibiotics.
    Wang J; Yao J; Zhu L; Gao C; Liu J; She S; Wu X
    Chemosphere; 2022 Feb; 289():133211. PubMed ID: 34890620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cu
    Feng Y; Liao C; Li H; Liu C; Shih K
    Environ Technol; 2018 Jan; 39(1):1-11. PubMed ID: 28278773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of As(III) removal properties of biochar-supported molybdenum-disulfide/iron-oxide system.
    Khan ZH; Gao M; Wu J; Bi R; Mehmood CT; Song Z
    Environ Pollut; 2021 Oct; 287():117600. PubMed ID: 34153605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of peroxymonosulfate by cobalt-impregnated biochar for atrazine degradation: The pivotal roles of persistent free radicals and ecotoxicity assessment.
    Liu B; Guo W; Wang H; Si Q; Zhao Q; Luo H; Ren N
    J Hazard Mater; 2020 Nov; 398():122768. PubMed ID: 32768854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cobalt-impregnated biochar produced from CO
    Yang MT; Du Y; Tong WC; Yip ACK; Lin KA
    Chemosphere; 2019 Jul; 226():924-933. PubMed ID: 31509922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fe-g-C
    Bai X; Shi J; Xu L; Jin X; Shi X; Jin P
    Sci Total Environ; 2023 Jan; 855():158799. PubMed ID: 36113786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of microplastics and environmentally persistent free radicals on the ability of biochar components to promote degradation of antibiotics by activated peroxymonosulfate.
    Zhang Y; He R; Sun Y; Zhao J; Zhang X; Wang J; Bildyukevich AV
    Environ Pollut; 2024 May; 349():123827. PubMed ID: 38574947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation of 1,4-dioxane by biochar activating peroxymonosulfate under continuous flow conditions.
    Ouyang D; Chen Y; Chen R; Zhang W; Yan J; Gu M; Li J; Zhang H; Chen M
    Sci Total Environ; 2022 Feb; 809():151929. PubMed ID: 34883170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.