These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3655480)

  • 1. [Potential role of phosphoprotein in collagen mineralization--an experimental study in vitro].
    Endo A
    Nihon Seikeigeka Gakkai Zasshi; 1987 May; 61(5):563-75. PubMed ID: 3655480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The possible role of collagen fibrils and collagen-phosphoprotein complexes in the calcification of bone in vitro and in vivo.
    Glimcher MJ
    Biomaterials; 1990 Jul; 11():7-10. PubMed ID: 2204439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of complexing phosphoproteins to decalcified collagen on in vitro calcification.
    Endo A; Glimcher MJ
    Connect Tissue Res; 1989; 21(1-4):179-90; discussion 191-6. PubMed ID: 2605942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of calcification: role of collagen fibrils and collagen-phosphoprotein complexes in vitro and in vivo.
    Glimcher MJ
    Anat Rec; 1989 Jun; 224(2):139-53. PubMed ID: 2672881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental appearance and ultrastructural immunolocalization of a major 66 kDa phosphoprotein in embryonic and post-natal chicken bone.
    McKee MD; Nanci A; Landis WJ; Gotoh Y; Gerstenfeld LC; Glimcher MJ
    Anat Rec; 1990 Sep; 228(1):77-92. PubMed ID: 2240604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and ultrastructural immunolocalization of a major 66 kDa phosphoprotein synthesized by chicken osteoblasts during mineralization in vitro.
    Gerstenfeld LC; Gotoh Y; McKee MD; Nanci A; Landis WJ; Glimcher MJ
    Anat Rec; 1990 Sep; 228(1):93-103. PubMed ID: 2240605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fixation and demineralization on the retention of bone phosphoprotein and other matrix components as evaluated by biochemical analyses and quantitative immunocytochemistry.
    McKee MD; Nanci A; Landis WJ; Gotoh Y; Gerstenfeld LC; Glimcher MJ
    J Bone Miner Res; 1991 Sep; 6(9):937-45. PubMed ID: 1789141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteolipid and collagen calcification, in vitro.
    Ennever J; Riggan LJ; Vogel JJ
    Cytobios; 1984; 39(155-156):151-7. PubMed ID: 6734265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization.
    Wu Y; Ackerman JL; Strawich ES; Rey C; Kim HM; Glimcher MJ
    Calcif Tissue Int; 2003 May; 72(5):610-26. PubMed ID: 12724829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bound phosphoproteins enhance mineralization of alkaline phosphatase-collagen complexes in vivo.
    van den Bos T; Beertsen W
    J Bone Miner Res; 1994 Aug; 9(8):1205-9. PubMed ID: 7976503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentrations of osteocalcin and phosphoprotein as a function of mineral content and age in cortical bone.
    Lian JB; Roufosse AH; Reit B; Glimcher MJ
    Calcif Tissue Int; 1982; 34 Suppl 2():S82-7. PubMed ID: 6816454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Kinetic study on collagen mineralization by ultraviolet absorption spectra].
    Huang ZL; Zhang W; Cui FZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Apr; 24(4):466-9. PubMed ID: 15766159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomineralization in the presence of calcium-binding phosphoprotein particles.
    Marsh ME
    J Exp Zool; 1986 Aug; 239(2):207-20. PubMed ID: 3746232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mineral-matrix interactions in bone and dentin.
    Veis A
    J Bone Miner Res; 1993 Dec; 8 Suppl 2():S493-7. PubMed ID: 8122518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.
    Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF
    J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution and characterization of mineral-binding phosphoprotein particles in Bivalvia.
    Marsh ME; Sass RL
    J Exp Zool; 1985 May; 234(2):237-42. PubMed ID: 3998682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagen structure regulates fibril mineralization in osteogenesis as revealed by cross-link patterns in calcifying callus.
    Wassen MH; Lammens J; Tekoppele JM; Sakkers RJ; Liu Z; Verbout AJ; Bank RA
    J Bone Miner Res; 2000 Sep; 15(9):1776-85. PubMed ID: 10976997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight.
    Jee SS; Thula TT; Gower LB
    Acta Biomater; 2010 Sep; 6(9):3676-86. PubMed ID: 20359554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging.
    Landis WJ; Hodgens KJ; Song MJ; Arena J; Kiyonaga S; Marko M; Owen C; McEwen BF
    J Struct Biol; 1996; 117(1):24-35. PubMed ID: 8776885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.