These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 36555004)
21. Lin Y; Lin S; Akutse KS; Hussain M; Wang L Front Plant Sci; 2016; 7():1969. PubMed ID: 28083006 [TBL] [Abstract][Full Text] [Related]
22. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Fan J; Francis F; Liu Y; Chen JL; Cheng DF Genet Mol Res; 2011 Dec; 10(4):3056-69. PubMed ID: 22180039 [TBL] [Abstract][Full Text] [Related]
23. An Inexpensive and Comprehensive Method to Examine and Quantify Field Insect Community Influenced by Host Plant Olfactory Cues. Kariyat R; Chavana J; Kaur J Bio Protoc; 2018 Aug; 8(16):e2967. PubMed ID: 34395772 [TBL] [Abstract][Full Text] [Related]
24. What Does an Insect Hear? Reassessing the Role of Hearing in Predator Avoidance with Insights from Vertebrate Prey. Yack JE; Raven BH; Leveillee MB; Naranjo M Integr Comp Biol; 2020 Nov; 60(5):1036-1057. PubMed ID: 32717080 [TBL] [Abstract][Full Text] [Related]
25. Fungal Volatiles as Olfactory Cues for Female Fungus Gnat, Lycoriella ingenua in the Avoidance of Mycelia Colonized Compost. Kecskeméti S; Szelényi MO; Erdei AL; Geösel A; Fail J; Molnár BP J Chem Ecol; 2020 Oct; 46(10):917-926. PubMed ID: 33026596 [TBL] [Abstract][Full Text] [Related]
26. Plant odour plumes as mediators of plant-insect interactions. Beyaert I; Hilker M Biol Rev Camb Philos Soc; 2014 Feb; 89(1):68-81. PubMed ID: 23714000 [TBL] [Abstract][Full Text] [Related]
27. Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems. Beck JJ; Vannette RL J Agric Food Chem; 2017 Jan; 65(1):23-28. PubMed ID: 28073253 [TBL] [Abstract][Full Text] [Related]
28. Response of Wild Spotted Wing Drosophila (Drosophila suzukii) to Microbial Volatiles. Bueno E; Martin KR; Raguso RA; Mcmullen JG; Hesler SP; Loeb GM; Douglas AE J Chem Ecol; 2020 Aug; 46(8):688-698. PubMed ID: 31879864 [TBL] [Abstract][Full Text] [Related]
30. Ecological and Phylogenetic Relationships Shape the Peripheral Olfactory Systems of Highly Specialized Gall Midges (Cecidomiiydae). Molnár BP; Boddum T; Hill SR; Hansson BS; Hillbur Y; Birgersson G Front Physiol; 2018; 9():323. PubMed ID: 29666586 [TBL] [Abstract][Full Text] [Related]
32. Differential habitat use and antipredator response of juvenile roach (Rutilus rutilus) to olfactory and visual cues from multiple predators. Martin CW; Fodrie FJ; Heck KL; Mattila J Oecologia; 2010 Apr; 162(4):893-902. PubMed ID: 20127367 [TBL] [Abstract][Full Text] [Related]
33. Experience-based modulation of behavioural responses to plant volatiles and other sensory cues in insect herbivores. Anderson P; Anton S Plant Cell Environ; 2014 Aug; 37(8):1826-35. PubMed ID: 24689897 [TBL] [Abstract][Full Text] [Related]
34. Effects of starvation on the olfactory responses of the blood-sucking bug Rhodnius prolixus. Reisenman CE; Lee Y; Gregory T; Guerenstein PG J Insect Physiol; 2013 Jul; 59(7):717-21. PubMed ID: 23619244 [TBL] [Abstract][Full Text] [Related]
35. Physical processes and real-time chemical measurement of the insect olfactory environment. Riffell JA; Abrell L; Hildebrand JG J Chem Ecol; 2008 Jul; 34(7):837-53. PubMed ID: 18548311 [TBL] [Abstract][Full Text] [Related]
36. Host plant influences on sex pheromone behavior of phytophagous insects. Landolt PJ; Phillips TW Annu Rev Entomol; 1997; 42():371-91. PubMed ID: 15012318 [TBL] [Abstract][Full Text] [Related]
37. New insights into an ancient insect nose: the olfactory pathway of Lepismachilis y-signata (Archaeognatha: Machilidae). Missbach C; Harzsch S; Hansson BS Arthropod Struct Dev; 2011 Jul; 40(4):317-33. PubMed ID: 21665539 [TBL] [Abstract][Full Text] [Related]
38. Neural circuits regulating sexual behaviors via the olfactory system in mice. Ishii KK; Touhara K Neurosci Res; 2019 Mar; 140():59-76. PubMed ID: 30389572 [TBL] [Abstract][Full Text] [Related]