These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 36555055)
1. Evaluation of Phytoseiid and Iolinid Mites for Biological Control of the Tomato Russet Mite Pijnakker J; Hürriyet A; Petit C; Vangansbeke D; Duarte MVA; Arijs Y; Moerkens R; Sutter L; Maret D; Wäckers F Insects; 2022 Dec; 13(12):. PubMed ID: 36555055 [TBL] [Abstract][Full Text] [Related]
2. The predatory mite Pronematus ubiquitus curbs Aculops lycopersici damage under greenhouse conditions. Maret D; Wäckers F; Pijnakker J; Norgrove L; Sutter L Pest Manag Sci; 2024 Apr; 80(4):1904-1911. PubMed ID: 38062929 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of Natural and Factitious Food Sources for Duarte MVA; Vangansbeke D; Pijnakker J; Moerkens R; Benavente A; Arijs Y; Saucedo ALF; Wäckers F Insects; 2021 Dec; 12(12):. PubMed ID: 34940199 [No Abstract] [Full Text] [Related]
4. Dual protection: A tydeoid mite effectively controls both a problem pest and a key pathogen in tomato. Pijnakker J; Moerkens R; Vangansbeke D; Duarte M; Bellinkx S; Benavente A; Merckx J; Stevens I; Wäckers F Pest Manag Sci; 2022 Jan; 78(1):355-361. PubMed ID: 34532955 [TBL] [Abstract][Full Text] [Related]
5. Modelling the interaction between a pest (Aculops lycopersici), two predators (Pronematus ubiquitus and Macrolophus pygmaeus) and climate variables: a 3-year greenhouse study in a tomato crop. Moerkens R; Vangansbeke D; Duarte MVA; Bellinkx S; De Roo E; Pijnakker J; Wäckers F Pest Manag Sci; 2023 Dec; 79(12):5362-5373. PubMed ID: 37632129 [TBL] [Abstract][Full Text] [Related]
6. Predation, development, and oviposition by the predatory mite Amblyseius swirkii (Acari: Phytoseiidae) on tomato russet mite (Acari: Eriophyidae). Park HH; Shipp L; Buitenhuis R J Econ Entomol; 2010 Jun; 103(3):563-9. PubMed ID: 20568599 [TBL] [Abstract][Full Text] [Related]
7. Herbivory-associated degradation of tomato trichomes and its impact on biological control of Aculops lycopersici. van Houten YM; Glas JJ; Hoogerbrugge H; Rothe J; Bolckmans KJ; Simoni S; van Arkel J; Alba JM; Kant MR; Sabelis MW Exp Appl Acarol; 2013 Jun; 60(2):127-38. PubMed ID: 23238958 [TBL] [Abstract][Full Text] [Related]
8. Control of Castañé C; Alomar O; Rocha A; Vila E; Riudavets J Insects; 2022 Dec; 13(12):. PubMed ID: 36555026 [TBL] [Abstract][Full Text] [Related]
9. Is the emerging mite pest Aculops lycopersici controllable? Global and genome-based insights in its biology and management. Vervaet L; De Vis R; De Clercq P; Van Leeuwen T Pest Manag Sci; 2021 Jun; 77(6):2635-2644. PubMed ID: 33415791 [TBL] [Abstract][Full Text] [Related]
10. Genetic analysis of the tomato russet mite provides evidence of oligophagy and a widespread pestiferous haplotype. Duarte ME; Lewandowski M; de Mendonça RS; Simoni S; Navia D Exp Appl Acarol; 2023 Feb; 89(2):171-199. PubMed ID: 36795266 [TBL] [Abstract][Full Text] [Related]
11. Amblyseius andersoni Chant (Acari: Phytoseiidae), a successful predatory mite on Rosa spp. van der Linden A Commun Agric Appl Biol Sci; 2004; 69(3):157-63. PubMed ID: 15759407 [TBL] [Abstract][Full Text] [Related]
12. Toxicity evaluation of oxamyl against tomato russet mite, Aculops lycopersici (Massee) (Acari: Eriophyideae) and two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) under greenhouse conditions. Alhewairini SS Braz J Biol; 2022; 84():e253469. PubMed ID: 35293530 [TBL] [Abstract][Full Text] [Related]
13. Suppression of hemp russet mite, Aculops cannabicola (Acari: Eriophyidae), in industrial hemp in greenhouse and field. Szczepaniec A; Lathrop-Melting A; Janecek T; Nachappa P; Cranshaw W; Alnajjar G; Axtell A Environ Entomol; 2024 Feb; 53(1):18-25. PubMed ID: 37535975 [TBL] [Abstract][Full Text] [Related]
14. Genome streamlining in a minute herbivore that manipulates its host plant. Greenhalgh R; Dermauw W; Glas JJ; Rombauts S; Wybouw N; Thomas J; Alba JM; Pritham EJ; Legarrea S; Feyereisen R; Van de Peer Y; Van Leeuwen T; Clark RM; Kant MR Elife; 2020 Oct; 9():. PubMed ID: 33095158 [TBL] [Abstract][Full Text] [Related]
15. Apple pollen as a supplemental food source for the control of western flower thrips by two predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae), on potted chrysanthemum. Delisle JF; Shipp L; Brodeur J Exp Appl Acarol; 2015 Apr; 65(4):495-509. PubMed ID: 25420686 [TBL] [Abstract][Full Text] [Related]
16. Mite diversity (Acari: Tetranychidae, Tydeidae, Iolinidae, Phytoseiidae) and within-tree distribution in citrus orchards in southern Spain, with special reference to Eutetranychus orientalis. Vela JM; Wong E; Jaques JA; Ledesma C; Boyero JR Exp Appl Acarol; 2017 Oct; 73(2):191-207. PubMed ID: 29022207 [TBL] [Abstract][Full Text] [Related]
17. Mitespotting: approaches for Aculops lycopersici monitoring in tomato cultivation. Pfaff A; Gabriel D; Böckmann E Exp Appl Acarol; 2020 Jan; 80(1):1-15. PubMed ID: 31848866 [TBL] [Abstract][Full Text] [Related]
18. Biological control of Eotetranychus lewisi and Tetranychus urticae (Acari: Tetranychidae) on strawberry by four phytoseiids (Acari: Phytoseiidae). Howell AD; Daugovish O J Econ Entomol; 2013 Feb; 106(1):80-5. PubMed ID: 23448018 [TBL] [Abstract][Full Text] [Related]
19. Are predatory mites effective as biological control agents to suppress Oligonychus ilicis (Acari: Tetranychidae) in blueberry plantings? Marucci RC; Ruber SE; Pec M; Liburd OE J Econ Entomol; 2024 Jun; 117(3):834-842. PubMed ID: 38687636 [TBL] [Abstract][Full Text] [Related]
20. Airborne pollen can affect the abundance of predatory mites in vineyards: implications for conservation biological control strategies. Malagnini V; Pozzebon A; Facchin P; Paganelli A; Duso C Pest Manag Sci; 2022 May; 78(5):1963-1975. PubMed ID: 35088932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]