These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 36555309)

  • 61. Natural Volcanic Material as a Sustainable Photocatalytic Material for Pollutant Degradation under Solar Irradiation.
    Borges ME; Navarro S; de Paz Carmona H; Esparza P
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683289
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Improving the Performance of ZnS Photocatalyst in Degrading Organic Pollutants by Constructing Composites with Ag
    Yu D; Fang H; Qiu P; Meng F; Liu H; Wang S; Lv P; Cong X; Niu Q; Li T
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34070788
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater.
    Ramalingam G; Perumal N; Priya AK; Rajendran S
    Chemosphere; 2022 Aug; 300():134391. PubMed ID: 35367486
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A review on plasmonic-based heterojunction photocatalysts for degradation of organic pollutants in wastewater.
    Nazir A; Huo P; Wang H; Weiqiang Z; Wan Y
    J Mater Sci; 2023; 58(15):6474-6515. PubMed ID: 37065680
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Advanced catalytic ozonation for degradation of pharmaceutical pollutants-A review.
    Issaka E; Amu-Darko JN; Yakubu S; Fapohunda FO; Ali N; Bilal M
    Chemosphere; 2022 Feb; 289():133208. PubMed ID: 34890622
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Recent advances in structural modifications of photo-catalysts for organic pollutants degradation - A comprehensive review.
    Bisaria K; Sinha S; Singh R; Iqbal HMN
    Chemosphere; 2021 Dec; 284():131263. PubMed ID: 34198058
    [TBL] [Abstract][Full Text] [Related]  

  • 67. CO
    Yoshino S; Takayama T; Yamaguchi Y; Iwase A; Kudo A
    Acc Chem Res; 2022 Apr; 55(7):966-977. PubMed ID: 35230087
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ethylenediamine-assisted growth of multi-dimensional ZnS nanostructures and study of its charge transfer mechanism on supercapacitor electrode and photocatalytic performance.
    Bhushan M; Jha R; Sharma R; Bhardwaj R
    Nanotechnology; 2020 Mar; 31(23):235602. PubMed ID: 32053814
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Novel S-scheme 2D/2D Bi
    Vadivel S; Fujii M; Rajendran S
    Environ Res; 2022 Oct; 213():113736. PubMed ID: 35750121
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Applications of Heterogeneous Photocatalysis to the Degradation of Oxytetracycline in Water: A Review.
    Pelosato R; Bolognino I; Fontana F; Sora IN
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566092
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer.
    Zhang Y; Zhang N; Tang ZR; Xu YJ
    ACS Nano; 2012 Nov; 6(11):9777-89. PubMed ID: 23106763
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Preparation and modification methods of defective titanium dioxide-based nanoparticles for photocatalytic wastewater treatment-a comprehensive review.
    Haruna A; Chong FK; Ho YC; Merican ZMA
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):70706-70745. PubMed ID: 36044146
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Graphitic carbon nitride based immobilized and non-immobilized floating photocatalysts for environmental remediation.
    Rana A; Sudhaik A; Raizada P; Nguyen VH; Xia C; Parwaz Khan AA; Thakur S; Nguyen-Tri P; Nguyen CC; Kim SY; Le QV; Singh P
    Chemosphere; 2022 Jun; 297():134229. PubMed ID: 35259362
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Polypyrrole-based nanomaterials: A novel strategy for reducing toxic chemicals and others related to environmental sustainability applications.
    Kumar R; Raizada P; Ahamad T; Alshehri SM; Le QV; Alomar TS; Nguyen VH; Selvasembian R; Thakur S; Nguyen DC; Singh P
    Chemosphere; 2022 Sep; 303(Pt 2):134993. PubMed ID: 35598782
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review.
    Ahmed S; Rasul MG; Brown R; Hashib MA
    J Environ Manage; 2011 Mar; 92(3):311-30. PubMed ID: 20950926
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Room-temperature synthesized In-BiOBr
    Duresa LW; Kuo DH; Huang HN
    Chemosphere; 2020 Nov; 258():127374. PubMed ID: 32554021
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hybridized 2D Nanomaterials Toward Highly Efficient Photocatalysis for Degrading Pollutants: Current Status and Future Perspectives.
    Guan G; Ye E; You M; Li Z
    Small; 2020 May; 16(19):e1907087. PubMed ID: 32301226
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Carbon-Based Nanomaterials for Catalytic Wastewater Treatment: A Review.
    Mohapatra L; Cheon D; Yoo SH
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838793
    [TBL] [Abstract][Full Text] [Related]  

  • 79. ZnO nanosheets-decorated Bi
    Koutavarapu R; Babu B; Reddy CV; Reddy IN; Reddy KR; Rao MC; Aminabhavi TM; Cho M; Kim D; Shim J
    J Environ Manage; 2020 Jul; 265():110504. PubMed ID: 32275239
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ternary Zn
    Karuppasamy K; Vikraman D; Hussain T; Hussain S; Bose R; Sivakumar P; Murthy AP; Alfantazi A; Kim HS
    Environ Res; 2021 Oct; 201():111587. PubMed ID: 34181921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.