These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 36555336)
1. Soybean Wang H; Li X; Su F; Liu H; Hu D; Huang F; Yu D; Wang H Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555336 [TBL] [Abstract][Full Text] [Related]
2. CALCIUM-DEPENDENT PROTEIN KINASE38 regulates flowering time and common cutworm resistance in soybean. Li X; Hu D; Cai L; Wang H; Liu X; Du H; Yang Z; Zhang H; Hu Z; Huang F; Kan G; Kong F; Liu B; Yu D; Wang H Plant Physiol; 2022 Aug; 190(1):480-499. PubMed ID: 35640995 [TBL] [Abstract][Full Text] [Related]
3. Knockdown of GmVQ58 encoding a VQ motif-containing protein enhances soybean resistance to the common cutworm (Spodoptera litura Fabricius). Li X; Qin R; Du Q; Cai L; Hu D; Du H; Yang H; Wang J; Huang F; Wang H; Yu D J Exp Bot; 2020 May; 71(10):3198-3210. PubMed ID: 32076725 [TBL] [Abstract][Full Text] [Related]
4. QTL mapping of antixenosis resistance to common cutworm (Spodoptera litura Fabricius) in wild soybean (Glycine soja). Oki N; Kaga A; Shimizu T; Takahashi M; Kono Y; Takahashi M PLoS One; 2017; 12(12):e0189440. PubMed ID: 29232719 [TBL] [Abstract][Full Text] [Related]
5. RNA-Seq analysis reveals transcript diversity and active genes after common cutworm (Spodoptera litura Fabricius) attack in resistant and susceptible wild soybean lines. Du H; Li X; Ning L; Qin R; Du Q; Wang Q; Song H; Huang F; Wang H; Yu D BMC Genomics; 2019 Mar; 20(1):237. PubMed ID: 30902045 [TBL] [Abstract][Full Text] [Related]
6. Genetic analysis of antixenosis resistance to the common cutworm (Spodoptera litura Fabricius) and its relationship with pubescence characteristics in soybean (Glycine max (L.) Merr.). Oki N; Komatsu K; Sayama T; Ishimoto M; Takahashi M; Takahashi M Breed Sci; 2012 Jan; 61(5):608-17. PubMed ID: 23136499 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the resistance effect of QTLs derived from wild soybean ( Oki N; Takagi K; Ishimoto M; Takahashi M; Takahashi M Breed Sci; 2019 Sep; 69(3):529-535. PubMed ID: 31598088 [TBL] [Abstract][Full Text] [Related]
8. The Identification of a Quantative Trait Loci-Allele System of Antixenosis against the Common Cutworm ( Pan L; Gai J; Xing G Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003278 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis of soybean lines reveals transcript diversity and genes involved in the response to common cutworm (Spodoptera litura Fabricius) feeding. Wang Y; Wang H; Fan R; Yang Q; Yu D Plant Cell Environ; 2014 Sep; 37(9):2086-101. PubMed ID: 24506757 [TBL] [Abstract][Full Text] [Related]
10. Genome-Wide Association Studies Reveal Novel Loci for Herbivore Resistance in Wild Soybean ( Du H; Qin R; Li H; Du Q; Li X; Yang H; Kong F; Liu B; Yu D; Wang H Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887365 [TBL] [Abstract][Full Text] [Related]
11. Molecular Basis Underlying Common Cutworm Resistance of the Primitive Soybean Landrace Peking. Nakata R; Yano M; Hiraga S; Teraishi M; Okumoto Y; Mori N; Kaga A Front Genet; 2020; 11():581917. PubMed ID: 33304385 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the genomic sequence data around common cutworm resistance genes in soybean ( Ogiso-Tanaka E; Oki N; Tanaka T; Shimizu T; Ishimoto M; Hajika M; Kaga A Data Brief; 2021 Feb; 34():106577. PubMed ID: 33376760 [TBL] [Abstract][Full Text] [Related]
13. CRISPR/Cas9-Mediated Targeted Mutagenesis of Zhang Y; Guo W; Chen L; Shen X; Yang H; Fang Y; Ouyang W; Mai S; Chen H; Chen S; Hao Q; Yuan S; Zhang C; Huang Y; Shan Z; Yang Z; Qiu D; Zhou X; Cao D; Li X; Jiao Y Front Plant Sci; 2022; 13():802716. PubMed ID: 35273623 [TBL] [Abstract][Full Text] [Related]
14. A high-throughput phenotyping procedure for evaluation of antixenosis against common cutworm at early seedling stage in soybean. Xing G; Liu K; Gai J Plant Methods; 2017; 13():66. PubMed ID: 28794796 [TBL] [Abstract][Full Text] [Related]
15. Effects of Elevated CO2 on Plant Chemistry, Growth, Yield of Resistant Soybean, and Feeding of a Target Lepidoptera Pest, Spodoptera litura (Lepidoptera: Noctuidae). Yifei Z; Yang D; Guijun W; Bin L; Guangnan X; Fajun C Environ Entomol; 2018 Aug; 47(4):848-856. PubMed ID: 29701817 [TBL] [Abstract][Full Text] [Related]
16. Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. Wang Y; Gu Y; Gao H; Qiu L; Chang R; Chen S; He C BMC Evol Biol; 2016 Apr; 16():79. PubMed ID: 27072125 [TBL] [Abstract][Full Text] [Related]
17. Identification of soybean MYC2-like transcription factors and overexpression of GmMYC1 could stimulate defense mechanism against common cutworm in transgenic tobacco. Wang H; Ding C; Du H; Liu H; Wang Y; Yu D Biotechnol Lett; 2014 Sep; 36(9):1881-92. PubMed ID: 24863293 [TBL] [Abstract][Full Text] [Related]
18. GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots. Chen L; Jiang B; Wu C; Sun S; Hou W; Han T BMC Plant Biol; 2014 Sep; 14():245. PubMed ID: 25224536 [TBL] [Abstract][Full Text] [Related]
19. A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean. Zhang W; Liao X; Cui Y; Ma W; Zhang X; Du H; Ma Y; Ning L; Wang H; Huang F; Yang H; Kan G; Yu D PLoS Genet; 2019 Jan; 15(1):e1007798. PubMed ID: 30615606 [TBL] [Abstract][Full Text] [Related]
20. Expression of Cry1Ac in transgenic Bt soybean lines and their efficiency in controlling lepidopteran pests. Yu H; Li Y; Li X; Romeis J; Wu K Pest Manag Sci; 2013 Dec; 69(12):1326-33. PubMed ID: 23564718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]