These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 36555473)
1. SARS-CoV-2 Spike Protein Mutation at Cysteine-488 Impairs Its Golgi Localization and Intracellular S1/S2 Processing. Yamamoto Y; Inoue T; Inoue M; Murae M; Fukasawa M; Kaneko MK; Kato Y; Noguchi K Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555473 [TBL] [Abstract][Full Text] [Related]
3. SARS-CoV-2 Spike Furin Cleavage Site and S2' Basic Residues Modulate the Entry Process in a Host Cell-Dependent Manner. Lavie M; Dubuisson J; Belouzard S J Virol; 2022 Jul; 96(13):e0047422. PubMed ID: 35678602 [TBL] [Abstract][Full Text] [Related]
4. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. Hörnich BF; Großkopf AK; Schlagowski S; Tenbusch M; Kleine-Weber H; Neipel F; Stahl-Hennig C; Hahn AS J Virol; 2021 Apr; 95(9):. PubMed ID: 33608407 [TBL] [Abstract][Full Text] [Related]
5. Proteolytic Activation of SARS-CoV-2 Spike at the S1/S2 Boundary: Potential Role of Proteases beyond Furin. Tang T; Jaimes JA; Bidon MK; Straus MR; Daniel S; Whittaker GR ACS Infect Dis; 2021 Feb; 7(2):264-272. PubMed ID: 33432808 [TBL] [Abstract][Full Text] [Related]
6. Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the Pathogenesis of COVID-19 Infection. Letarov AV; Babenko VV; Kulikov EE Biochemistry (Mosc); 2021 Mar; 86(3):257-261. PubMed ID: 33838638 [TBL] [Abstract][Full Text] [Related]
7. A novel antibody against the furin cleavage site of SARS-CoV-2 spike protein: Effects on proteolytic cleavage and ACE2 binding. Spelios MG; Capanelli JM; Li AW Immunol Lett; 2022 Feb; 242():1-7. PubMed ID: 35007661 [TBL] [Abstract][Full Text] [Related]
8. A Suitable Membrane Distance Regulated by the RBD_ACE2 Interaction is Critical for SARS-CoV-2 Spike-Mediated Viral Invasion. Wu M; Li W; Lin S; Fan J; Cui L; Xiang Y; Li K; Tang L; Duan Y; Chen Z; Yang F; Shui W; Lu G; Lai Y Adv Sci (Weinh); 2023 Oct; 10(28):e2301478. PubMed ID: 37590389 [TBL] [Abstract][Full Text] [Related]
9. The "LLQY" Motif on SARS-CoV-2 Spike Protein Affects S Incorporation into Virus Particles. Du S; Xu W; Wang Y; Li L; Hao P; Tian M; Wang M; Li T; Wu S; Liu Q; Bai J; Qu X; Jin N; Zhou B; Liao M; Li C J Virol; 2022 Mar; 96(6):e0189721. PubMed ID: 35045269 [TBL] [Abstract][Full Text] [Related]
10. SARS-CoV-2 spike engagement of ACE2 primes S2' site cleavage and fusion initiation. Yu S; Zheng X; Zhou B; Li J; Chen M; Deng R; Wong G; Lavillette D; Meng G Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34930824 [TBL] [Abstract][Full Text] [Related]
11. Acquisition of Furin Cleavage Site and Further SARS-CoV-2 Evolution Change the Mechanisms of Viral Entry, Infection Spread, and Cell Signaling. Frolova EI; Palchevska O; Lukash T; Dominguez F; Britt W; Frolov I J Virol; 2022 Aug; 96(15):e0075322. PubMed ID: 35876526 [TBL] [Abstract][Full Text] [Related]
13. SARS-CoV-2 Spike Protein Is Capable of Inducing Cell-Cell Fusions Independent from Its Receptor ACE2 and This Activity Can Be Impaired by Furin Inhibitors or a Subset of Monoclonal Antibodies. Reuter N; Chen X; Kropff B; Peter AS; Britt WJ; Mach M; Überla K; Thomas M Viruses; 2023 Jul; 15(7):. PubMed ID: 37515187 [TBL] [Abstract][Full Text] [Related]
14. Metalloproteinase-Dependent and TMPRSS2-Independent Cell Surface Entry Pathway of SARS-CoV-2 Requires the Furin Cleavage Site and the S2 Domain of Spike Protein. Yamamoto M; Gohda J; Kobayashi A; Tomita K; Hirayama Y; Koshikawa N; Seiki M; Semba K; Akiyama T; Kawaguchi Y; Inoue JI mBio; 2022 Aug; 13(4):e0051922. PubMed ID: 35708281 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide bioinformatics analysis of human protease capacity for proteolytic cleavage of the SARS-CoV-2 spike glycoprotein. Matveev EV; Ponomarev GV; Kazanov MD Microbiol Spectr; 2024 Feb; 12(2):e0353023. PubMed ID: 38189333 [TBL] [Abstract][Full Text] [Related]
16. Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell-cell fusion. Barrett CT; Neal HE; Edmonds K; Moncman CL; Thompson R; Branttie JM; Boggs KB; Wu CY; Leung DW; Dutch RE J Biol Chem; 2021 Jul; 297(1):100902. PubMed ID: 34157282 [TBL] [Abstract][Full Text] [Related]
17. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Benton DJ; Wrobel AG; Xu P; Roustan C; Martin SR; Rosenthal PB; Skehel JJ; Gamblin SJ Nature; 2020 Dec; 588(7837):327-330. PubMed ID: 32942285 [TBL] [Abstract][Full Text] [Related]
18. The Spike-Stabilizing D614G Mutation Interacts with S1/S2 Cleavage Site Mutations To Promote the Infectious Potential of SARS-CoV-2 Variants. Gellenoncourt S; Saunders N; Robinot R; Auguste L; Rajah MM; Kervevan J; Jeger-Madiot R; Staropoli I; Planchais C; Mouquet H; Buchrieser J; Schwartz O; Chakrabarti LA J Virol; 2022 Oct; 96(19):e0130122. PubMed ID: 36121299 [TBL] [Abstract][Full Text] [Related]
20. Selective Inhibition of the Interaction between SARS-CoV-2 Spike S1 and ACE2 by SPIDAR Peptide Induces Anti-Inflammatory Therapeutic Responses. Paidi RK; Jana M; Mishra RK; Dutta D; Pahan K J Immunol; 2021 Nov; 207(10):2521-2533. PubMed ID: 34645689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]