BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 36555712)

  • 1. Contingent Synergistic Interactions between Non-Coding RNAs and DNA-Modifying Enzymes in Myelodysplastic Syndromes.
    Symeonidis A; Chatzilygeroudi T; Chondrou V; Sgourou A
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetics of myelodysplastic syndromes.
    Itzykson R; Fenaux P
    Leukemia; 2014 Mar; 28(3):497-506. PubMed ID: 24247656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and epigenetic pathways in myelodysplastic syndromes: A brief overview.
    Jhanwar SC
    Adv Biol Regul; 2015 May; 58():28-37. PubMed ID: 25499150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digging deep into "dirty" drugs - modulation of the methylation machinery.
    Pleyer L; Greil R
    Drug Metab Rev; 2015 May; 47(2):252-79. PubMed ID: 25566693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and Epigenetic Drug Targets in Myelodysplastic Syndromes.
    Stankov K; Stankov S; Katanic J
    Curr Pharm Des; 2017; 23(1):135-169. PubMed ID: 27697023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-hypomethylating agents as epigenetic therapy before and after allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes and juvenile myelomonocytic leukemia.
    Flotho C; Sommer S; Lübbert M
    Semin Cancer Biol; 2018 Aug; 51():68-79. PubMed ID: 29129488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The myelodysplastic syndrome as a prototypical epigenetic disease.
    Issa JP
    Blood; 2013 May; 121(19):3811-7. PubMed ID: 23660859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations of myelodysplastic syndromes (MDS): An update.
    Ganguly BB; Kadam NN
    Mutat Res Rev Mutat Res; 2016; 769():47-62. PubMed ID: 27543316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LEP promoter methylation in the initiation and progression of clonal cytopenia of undetermined significance and myelodysplastic syndrome.
    Kaastrup K; Gillberg L; Mikkelsen SU; Ørskov AD; Schöllkopf C; Mortensen BK; Porse B; Hansen JW; Grønbæk K
    Clin Epigenetics; 2023 May; 15(1):91. PubMed ID: 37237325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy.
    Zahid MF; Patnaik MM; Gangat N; Hashmi SK; Rizzieri DA
    Eur J Haematol; 2016 Oct; 97(4):313-20. PubMed ID: 27147278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetics in focus: pathogenesis of myelodysplastic syndromes and the role of hypomethylating agents.
    Santini V; Melnick A; Maciejewski JP; Duprez E; Nervi C; Cocco L; Ford KG; Mufti G
    Crit Rev Oncol Hematol; 2013 Nov; 88(2):231-45. PubMed ID: 23838480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic modifications of splicing factor genes in myelodysplastic syndromes and acute myeloid leukemia.
    Wong JJ; Lau KA; Pinello N; Rasko JE
    Cancer Sci; 2014 Nov; 105(11):1457-63. PubMed ID: 25220401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Pathogenesis and Treatment of Myelodysplastic Syndromes.
    Nakajima H
    Intern Med; 2021 Jan; 60(1):15-23. PubMed ID: 32009100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancer DNA methylation in acute myeloid leukemia and myelodysplastic syndromes.
    Benetatos L; Vartholomatos G
    Cell Mol Life Sci; 2018 Jun; 75(11):1999-2009. PubMed ID: 29484447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immune Dysregulation and Recurring Mutations in Myelodysplastic Syndromes Pathogenesis.
    Matos A; Magalhães SMM; Rauh MJ
    Adv Exp Med Biol; 2021; 1326():1-10. PubMed ID: 33385175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging treatments for myelodysplastic syndromes: Biological rationales and clinical translation.
    Rodriguez-Sevilla JJ; Adema V; Garcia-Manero G; Colla S
    Cell Rep Med; 2023 Feb; 4(2):100940. PubMed ID: 36787738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progressive chromatin repression and promoter methylation of CTNNA1 associated with advanced myeloid malignancies.
    Ye Y; McDevitt MA; Guo M; Zhang W; Galm O; Gore SD; Karp JE; Maciejewski JP; Kowalski J; Tsai HL; Gondek LP; Tsai HC; Wang X; Hooker C; Smith BD; Carraway HE; Herman JG
    Cancer Res; 2009 Nov; 69(21):8482-90. PubMed ID: 19826047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell Multiomics Analysis of Myelodysplastic Syndromes and Clinical Response to Hypomethylating Therapy.
    Campillo-Marcos I; Casado-Pelaez M; Davalos V; Ferrer G; Mata C; Mereu E; Roué G; Valcárcel D; Molero A; Zamora L; Xicoy B; Palomo L; Acha P; Manzanares A; Tobiasson M; Hellström-Lindberg E; Solé F; Esteller M
    Cancer Res Commun; 2024 Feb; 4(2):365-377. PubMed ID: 38300528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment options in advanced myelodysplastic syndrome, with emphasis on epigenetic therapy.
    Oki Y; Issa JP
    Int J Hematol; 2007 Nov; 86(4):306-14. PubMed ID: 18055336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The changing mutational landscape of acute myeloid leukemia and myelodysplastic syndrome.
    Larsson CA; Cote G; Quintás-Cardama A
    Mol Cancer Res; 2013 Aug; 11(8):815-27. PubMed ID: 23645565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.